版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
OrganizingandVisualizingVariablesChapter2ObjectivesInthischapteryoulearn:
Methodstoorganizevariables.Methodstovisualizevariables.Methodstoorganizeorvisualizemorethanonevariableatthesametime.Principlesofpropervisualizations.CategoricalDataAreOrganizedByUtilizingTablesDCOVACategoricalDataTallyingData
SummaryTable
OneCategoricalVariable
TwoCategoricalVariablesContingencyTableOrganizingCategoricalData:SummaryTableAsummarytabletalliesthefrequenciesorpercentagesofitemsinasetofcategoriessothatyoucanseedifferencesbetweencategories.
ReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%DCOVAMainReasonYoungAdultsShopOnlineSource:Dataextractedandadaptedfrom“MainReasonYoungAdultsShopOnline?”USAToday,December5,2012,p.1A.AContingencyTableHelpsOrganizeTwoorMoreCategoricalVariablesUsedtostudypatternsthatmayexistbetweentheresponsesoftwoormorecategoricalvariablesCrosstabulatesortalliesjointlytheresponsesofthecategoricalvariablesFortwovariablesthetalliesforonevariablearelocatedintherowsandthetalliesforthesecondvariablearelocatedinthecolumnsDCOVAContingencyTable-ExampleArandomsampleof400invoicesisdrawn.Eachinvoiceiscategorizedasasmall,medium,orlargeamount.Eachinvoiceisalsoexaminedtoidentifyifthereareanyerrors.Thisdataarethenorganizedinthecontingencytabletotheright.DCOVANoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400ContingencyTableShowingFrequencyofInvoicesCategorizedBySizeandThePresenceOfErrorsContingencyTableBasedOnPercentageOfOverallTotalNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount42.50%5.00%47.50%MediumAmount25.00%10.00%35.00%LargeAmount16.25%1.25%17.50%Total83.75%16.25%100.0%42.50%=170/40025.00%=100/40016.25%=65/40083.75%ofsampledinvoiceshavenoerrorsand47.50%ofsampledinvoicesareforsmallamounts.ContingencyTableBasedOnPercentageofRowTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount89.47%10.53%100.0%MediumAmount71.43%28.57%100.0%LargeAmount92.86%7.14%100.0%Total83.75%16.25%100.0%89.47%=170/19071.43%=100/14092.86%=65/70Mediuminvoiceshavealargerchance(28.57%)ofhavingerrorsthansmall(10.53%)orlarge(7.14%)invoices.ContingencyTableBasedOnPercentageOfColumnTotalsNoErrorsErrorsTotalSmallAmount17020190MediumAmount10040140LargeAmount65570Total33565400DCOVANoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%50.75%=170/33530.77%=20/65Thereisa61.54%chancethatinvoiceswitherrorsareofmediumsize.TablesUsedForOrganizing
NumericalDataDCOVANumericalDataOrderedArrayCumulativeDistributionsFrequencyDistributionsOrganizingNumericalData:
OrderedArrayAnorderedarrayisasequenceofdata,inrankorder,fromthesmallestvaluetothelargestvalue.Showsrange(minimumvaluetomaximumvalue)Mayhelpidentifyoutliers(unusualobservations)AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAOrganizingNumericalData:
FrequencyDistributionThefrequencydistributionisasummarytableinwhichthedataarearrangedintonumericallyorderedclasses.
Youmustgiveattentiontoselectingtheappropriatenumberofclassgroupingsforthetable,determiningasuitablewidthofaclassgrouping,andestablishingtheboundariesofeachclassgroupingtoavoidoverlapping.Thenumberofclassesdependsonthenumberofvaluesinthedata.Withalargernumberofvalues,typicallytherearemoreclasses.Ingeneral,afrequencydistributionshouldhaveatleast5butnomorethan15classes.Todeterminethewidthofaclassinterval,youdividetherange(Highestvalue–Lowestvalue)ofthedatabythenumberofclassgroupingsdesired.DCOVAOrganizingNumericalData:
FrequencyDistributionExampleExample:Amanufacturerofinsulationrandomlyselects20winterdaysandrecordsthedailyhightemperature24,35,17,21,24,37,26,46,58,30,32,13,12,38,41,43,44,27,53,27DCOVAOrganizingNumericalData:
FrequencyDistributionExampleSortrawdatainascendingorder:
12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58Findrange:58-12=46Selectnumberofclasses:5(usuallybetween5and15)Computeclassinterval(width):10(46/5thenroundup)Determineclassboundaries(limits):Class1:10butlessthan20Class2:20butlessthan30Class3:30butlessthan40Class4:40butlessthan50Class5:50butlessthan60Computeclassmidpoints:15,25,35,45,55Countobservations&assigntoclassesDCOVAOrganizingNumericalData:FrequencyDistributionExample
ClassMidpoints Frequency10butlessthan2015 320butlessthan3025 630butlessthan4035 540butlessthan5045 450butlessthan6055 2
Total
20Datainorderedarray:12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58DCOVAOrganizingNumericalData:Relative&PercentFrequencyDistributionExample
ClassFrequency10butlessthan203.1515%20butlessthan306.3030%30butlessthan405.2525%40butlessthan504.2020%50butlessthan602.1010%
Total
201.00100%RelativeFrequency
PercentageDCOVARelativeFrequency=Frequency/Total,e.g.0.10=2/20OrganizingNumericalData:CumulativeFrequencyDistributionExampleClass10butlessthan20 315%315%20butlessthan30 630%945%30butlessthan40 525%1470%40butlessthan50 420%1890%50butlessthan60 210%20100%Total 20100 20 100%
PercentageCumulativePercentageCumulativePercentage=CumulativeFrequency/Total*100e.g.45%=100*9/20FrequencyCumulativeFrequencyDCOVAWhyUseaFrequencyDistribution?ItcondensestherawdataintoamoreusefulformItallowsforaquickvisualinterpretationofthedataItenablesthedeterminationofthemajorcharacteristicsofthedatasetincludingwherethedataareconcentrated/clusteredDCOVAFrequencyDistributions:
SomeTipsDifferentclassboundariesmayprovidedifferentpicturesforthesamedata(especiallyforsmallerdatasets)ShiftsindataconcentrationmayshowupwhendifferentclassboundariesarechosenAsthesizeofthedatasetincreases,theimpactofalterationsintheselectionofclassboundariesisgreatlyreducedWhencomparingtwoormoregroupswithdifferentsamplesizes,youmustuseeitherarelativefrequencyorapercentagedistributionDCOVAVisualizingCategoricalDataThroughGraphicalDisplaysDCOVACategoricalDataVisualizingDataBarChartSummaryTableForOneVariableContingencyTableForTwoVariablesSideBySideBarChartPieChartParetoChartVisualizingCategoricalData:
TheBarChartThebarchartvisualizesacategoricalvariableasaseriesofbars.Thelengthofeachbarrepresentseitherthefrequencyorpercentageofvaluesforeachcategory.Eachbarisseparatedbyaspacecalledagap.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
ThePieChartThepiechartisacirclebrokenupintoslicesthatrepresentcategories.Thesizeofeachsliceofthepievariesaccordingtothepercentageineachcategory.
DCOVAReasonForShoppingOnline?PercentBetterPrices37%Avoidingholidaycrowdsorhassles29%Convenience18%Betterselection13%Shipsdirectly3%VisualizingCategoricalData:
TheParetoChartUsedtoportraycategoricaldataAverticalbarchart,wherecategoriesareshownindescendingorderoffrequencyAcumulativepolygonisshowninthesamegraphUsedtoseparatethe“vitalfew”fromthe“trivialmany”DCOVAVisualizingCategoricalData:
TheParetoChart(con’t)DCOVA CumulativeCause Frequency Percent PercentWarpedcardjammed 36550.41% 50.41%Cardunreadable 23432.32% 82.73%ATMmalfunctions 32 4.42% 87.15%ATMoutofcash 28 3.87% 91.02%Invalidamountrequested 23 3.18% 94.20%Wrongkeystroke 23 3.18% 97.38%Lackoffundsinaccount 19 2.62% 100.00%Total 724 100.00%Source:DataextractedfromA.Bhalla,“Don’tMisusetheParetoPrinciple,”SixSigmaForumMagazine,May2009,pp.15–18.OrderedSummaryTableForCausesOfIncompleteATMTransactionsVisualizingCategoricalData:
TheParetoChart(con’t)DCOVAThe“VitalFew”VisualizingCategoricalData:
SideBySideBarChartsThesidebysidebarchartrepresentsthedatafromacontingencytable.
DCOVAInvoiceswitherrorsaremuchmorelikelytobeofmediumsize(61.54%vs30.77%and7.69%)NoErrorsErrorsTotalSmallAmount50.75%30.77%47.50%MediumAmount29.85%61.54%35.00%LargeAmount19.40%7.69%17.50%Total100.0%100.0%100.0%VisualizingNumericalDataByUsingGraphicalDisplaysNumericalDataOrderedArrayStem-and-LeafDisplayHistogramPolygonOgiveFrequencyDistributionsandCumulativeDistributionsDCOVAStem-and-LeafDisplayAsimplewaytoseehowthedataaredistributedandwhereconcentrationsofdataexistMETHOD:Separatethesorteddataseries
intoleadingdigits(thestems)and
thetrailingdigits(the
leaves)DCOVAOrganizingNumericalData:
StemandLeafDisplayAstem-and-leafdisplayorganizesdataintogroups(calledstems)sothatthevalueswithineachgroup(theleaves)branchouttotherightoneachrow.
StemLeaf1677888992001225732842AgeofCollegeStudents DayStudents NightStudentsStemLeaf1889920138323415AgeofSurveyedCollegeStudentsDayStudents161717181818191920202122222527323842NightStudents181819192021232832334145DCOVAVisualizingNumericalData:
TheHistogramAverticalbarchartofthedatainafrequencydistributioniscalledahistogram.Inahistogramtherearenogapsbetweenadjacentbars.Theclassboundaries(orclassmidpoints)areshownonthehorizontalaxis.Theverticalaxisiseitherfrequency,relativefrequency,orpercentage.Theheightofthebarsrepresentthefrequency,relativefrequency,orpercentage.DCOVAVisualizingNumericalData:
TheHistogram
ClassFrequency10butlessthan203.151520butlessthan306.303030butlessthan405.252540butlessthan504.202050butlessthan602.1010
Total
201.00100RelativeFrequency
Percentage(Inapercentagehistogramtheverticalaxiswouldbedefinedtoshowthepercentageofobservationsperclass)DCOVAVisualizingNumericalData:
ThePolygonApercentagepolygonisformedbyhavingthemidpointofeachclassrepresentthedatainthatclassandthenconnectingthesequenceofmidpointsattheirrespectiveclasspercentages.Thecumulativepercentagepolygon,orogive,displaysthevariableofinterestalongtheXaxis,andthecumulativepercentagesalongtheYaxis.Usefulwhentherearetwoormoregroupstocompare.DCOVAVisualizingNumericalData:
ThePercentagePolygonDCOVAUsefulWhenComparingTwoorMoreGroupsVisualizingNumericalData:
ThePercentagePolygonDCOVAVisualizingTwoNumericalVariablesByUsingGraphicalDisplaysTwoNumericalVariablesScatterPlotTime-SeriesPlotDCOVAVisualizingTwoNumericalVariables:TheScatterPlotScatterplotsareusedfornumericaldataconsistingofpairedobservationstakenfromtwonumericalvariablesOnevariableismeasuredontheverticalaxisandtheothervariableismeasuredonthehorizontalaxisScatterplotsareusedtoexaminepossiblerelationshipsbetweentwonumericalvariablesDCOVAScatterPlotExampleVolumeperdayCostperday231252614029146331603816742170501885519560200DCOVAATime-SeriesPlotisusedtostudypatternsinthevaluesofanumericvariableovertimeTheTime-SeriesPlot:NumericvariableismeasuredontheverticalaxisandthetimeperiodismeasuredonthehorizontalaxisVisualizingTwoNumericalVariables:TheTimeSeriesPlotDCOVATimeSeriesPlotExampleYearNumberofFranchises1996431997541998601999732000822001952002107200399200495DCOVAAmultidimensionalcontingencytableisconstructedbytallyingtheresponsesofthreeormorecategoricalvariables.InExcelcreatingaPivotTabletoyieldaninteractivedisplayofthistype.WhileMinitabwillnotcreateaninteractivetable,ithasmanyspecializedstatistical&graphicalprocedures(notcoveredinthisbook)toanalyze&visualizemultidimensionaldata.OrganizingManyCategoricalVariables:TheMultidimensionalContingencyTableDCOVAUsingExcelPivotTablesToOrganize&VisualizeManyVariablesApivottable:SummarizesvariablesasamultidimensionalsummarytableAllowsinteractivechangingofthelevelofsummarizationandformattingofthevariablesAllowsyoutointeractively“slice”yourdatatosummarizesubsetsofdatathatmeetspecifiedcriteriaCanbeusedtodiscoverpossiblepatternsandrelationshipsinmultidimensionaldatathatsimplertablesandchartswouldfailtomakeapparent.DCOVAAMultidimensionalContingencyTableTalliesResponsesOfThreeorMoreCategoricalVariablesTwoDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund&RiskLevelDCOVAThreeDimensionalTableShowingTheMean10YearReturn%BrokenOutByTypeOfFund,MarketCap,&RiskLevelDataDiscoveryMethodsCanYieldInitialInsightsIntoDataDatadiscoveryaremethodsenabletheperformanceofpreliminaryanalysesbymanipulatinginteractivesummarizationsAreusedto:TakeacloserlookathistoricalorstatusdataReviewdataforunusualvaluesUncovernewpatternsindataDrill-downisperhapsthesimplestformofdatadiscoveryDCOVADrill-DownRevealsTheDataUnderlyingAHigher-LevelSummaryDCOVAResultsofdrillingdowntothedetailsaboutsmallmarketcapvaluefundswithlowrisk.SomeDataDiscoveryMethodsArePrimarilyVisualAtreemapissuchamethodAtreemapvisualizesthecomparisonoftwoormorevariablesusingthesizeandcolorofrectanglestorepresentvaluesWhenusedwithoneormorecategoricalvariablesitformsamultilevelhierarchyortreethatcanuncoverpatternsamongnumericalvariables.DCOVAAnExampleOfATreemapDCOVAAtreemapofthenumericalvariablesassets(size)and10-yearreturnpercentage(color)forgrowthandvaluefundsthathavesmallmarketcapitalizationsandlowriskTheChallengesinOrganizingandVisualizingVariablesWhenorganizingandvisualizingdataneedtobemindfulof:ThelimitsofothersabilitytoperceiveandcomprehendPresentationissuesthatcanundercuttheusefulnessofmethodsfromthischapter.ItiseasytocreatesummariesthatObscurethedataorCreatefalseimpressionsDCOVAAnExampleOfObscuringData,InformationOverloadDCOVAFalseImpressionsCanBeCreatedInManyWaysSelectivesummarizationPresentingonlypartofthedatacollectedImproperlyconstructedchartsPotentialpiechartissuesImproperlyscaledaxesAYaxisthatdoesnotbeginattheoriginorisabrokenaxismissingintermediatevaluesChartjunkDCOVAAnExampleofSelectiveSummarization,TheseTwoSummarizationsTellTotallyDifferentStoriesDCOVACompanyChangefromPriorYearCompanyYear1Year2Year3A+7.2%A-22.6%-33.2%+7.2%B+24.4%B-4.5%-41.9%+24.4%C+24.9%C-18.5%-31.5%+24.9%D+24.8%D-29.4%-48.1%+24.8%E+12.5%E-1.9%-25.3%+12.5%F+35.1%F-1.6%-37.8%+35.1%G+29.7%G+7.4%-13.6%+29.7%HowObviousIsItThatBothPieChartsSummarizeTheSameData?DCOVAWhyis
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 6379.4-2025測(cè)量方法與結(jié)果的準(zhǔn)確度(正確度與精密度)第4部分:確定標(biāo)準(zhǔn)測(cè)量方法正確度的基本方法
- 2026年綠色供應(yīng)鏈協(xié)同管理實(shí)務(wù)
- 2026年會(huì)員日促銷方案策劃指南
- 2026福建福州軟件職業(yè)技術(shù)學(xué)院招聘19人備考題庫(kù)附答案詳解
- 2026西藏山南加查縣文旅局公益性崗位的招聘1人備考題庫(kù)及答案詳解參考
- 計(jì)算機(jī)自然語(yǔ)言處理應(yīng)用手冊(cè)
- 職業(yè)噪聲心血管疾病的綜合干預(yù)策略優(yōu)化
- 職業(yè)噪聲與心血管疾病環(huán)境暴露評(píng)估技術(shù)
- 客戶活動(dòng)年終總結(jié)范文(3篇)
- 職業(yè)健康檔案電子化數(shù)據(jù)在職業(yè)病科研中的應(yīng)用
- 2026年無(wú)錫工藝職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)帶答案解析
- 【低空經(jīng)濟(jì)】無(wú)人機(jī)AI巡檢系統(tǒng)設(shè)計(jì)方案
- 2025年湖南省公務(wù)員錄用考試錄用考試《申論》標(biāo)準(zhǔn)試卷及答案
- 漢字的傳播教學(xué)課件
- 行政崗位面試問(wèn)題庫(kù)及應(yīng)對(duì)策略
- 2025衢州市市級(jí)機(jī)關(guān)事業(yè)單位編外招聘77人筆試試題附答案解析
- 2025年中信金融業(yè)務(wù)面試題庫(kù)及答案
- 零碳園區(qū)數(shù)字化建筑設(shè)計(jì)方案
- GB/T 46607.1-2025塑料熱固性粉末模塑料(PMCs)試樣的制備第1部分:一般原理及多用途試樣的制備
- 紫金礦業(yè)招聘面試題及答案
- 2025至2030寵物衣服市場(chǎng)行業(yè)運(yùn)營(yíng)態(tài)勢(shì)與投資前景調(diào)查研究報(bào)告
評(píng)論
0/150
提交評(píng)論