版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省陸良縣2025屆高二上數(shù)學(xué)期末綜合測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.經(jīng)過直線與直線的交點(diǎn),且平行于直線的直線方程為()A. B.C. D.2.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊(duì)”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.3.設(shè)、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則4.已知雙曲線:的右焦點(diǎn)為,過的直線(為常數(shù))與雙曲線在第一象限交于點(diǎn).若(為原點(diǎn)),則的離心率為()A. B.C. D.55.已知函數(shù)f(x)=x(lnx-ax)有兩個極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A.(-∞,0) B.C.(0,1) D.(0,+∞)6.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.7.下列命題是真命題的個數(shù)為()①不等式的解集為②不等式的解集為R③設(shè),則④命題“若,則或”為真命題A1 B.2C.3 D.48.函數(shù)極小值為()A. B.C. D.9.過拋物線()的焦點(diǎn)作斜率大于的直線交拋物線于,兩點(diǎn)(在的上方),且與準(zhǔn)線交于點(diǎn),若,則A. B.C. D.10.如圖,在平行六面體中,()A. B.C. D.11.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.12.等比數(shù)列的前項(xiàng)和為,若,則()A. B.8C.1或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱柱中,底面積為,一個側(cè)面的周長為,則正三棱柱外接球的表面積為______.14.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點(diǎn),使得經(jīng)過這三個頂點(diǎn)的平面與直線垂直.這三個頂點(diǎn)可以是________15.參加數(shù)學(xué)興趣小組的小何同學(xué)在打籃球時(shí),發(fā)現(xiàn)當(dāng)籃球放在地面上時(shí),籃球的斜上方燈泡照過來的光線使得籃球在地面上留下的影子有點(diǎn)像數(shù)學(xué)課堂上學(xué)過的橢圓,但他自己還是不太確定這個想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問題的,而且通過學(xué)習(xí),他還確定地面和籃球的接觸點(diǎn)(切點(diǎn))就是影子橢圓的焦點(diǎn).他在家里做了個探究實(shí)驗(yàn):如圖所示,桌面上有一個籃球,若籃球的半徑為個單位長度,在球的右上方有一個燈泡(當(dāng)成質(zhì)點(diǎn)),燈泡與桌面的距離為個單位長度,燈泡垂直照射在平面的點(diǎn)為,影子橢圓的右頂點(diǎn)到點(diǎn)的距離為個單位長度,則這個影子橢圓的離心率______.16.已知等比數(shù)列的前n和為,若成等差數(shù)列,且,,則的值為_______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值18.(12分)某高中招聘教師,首先要對應(yīng)聘者的簡歷進(jìn)行篩選,簡歷達(dá)標(biāo)者進(jìn)入面試,面試環(huán)節(jié)應(yīng)聘者要回答3道題,第一題為教育心理學(xué)知識,答對得4分,答錯得0分,后兩題為學(xué)科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應(yīng)聘,他們中僅有3人的簡歷達(dá)標(biāo),若從這5人中隨機(jī)抽取3人,求這3人中恰有2人簡歷達(dá)標(biāo)的概率;(2)某進(jìn)入面試的應(yīng)聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應(yīng)聘者的面試成績X的分布列及數(shù)學(xué)期望19.(12分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設(shè)面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點(diǎn)E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.20.(12分)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明21.(12分)△ABC的三個頂點(diǎn)分別為(1)求△ABC的外接圓M的方程;(2)設(shè)直線與圓M交于兩點(diǎn),求|PQ|的值22.(10分)在等差數(shù)列中,已知公差,前項(xiàng)和(其中)(1)求;(2)求和:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出兩直線的交點(diǎn)坐標(biāo),可設(shè)所求直線的方程為,將交點(diǎn)坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點(diǎn)坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.2、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點(diǎn)睛】此題考查條件概率問題,屬于基礎(chǔ)題3、C【解析】利用原命題與逆否命題之間的關(guān)系可得結(jié)論.【詳解】由原命題與逆否命題之間的關(guān)系可知,命題“若,則”的逆否命題是“若,則”.故選:C.4、D【解析】取雙曲線的左焦點(diǎn),連接,計(jì)算可得,即.設(shè),則,,解得:,利用勾股定理計(jì)算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點(diǎn),連接,,則因?yàn)?,所以,?,.設(shè),則,,解得:.,,..故選:D5、B【解析】函數(shù)f(x)=x(lnx﹣ax),則f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函數(shù)f(x)=x(lnx﹣ax)有兩個極值點(diǎn),等價(jià)于f′(x)=lnx﹣2ax+1有兩個零點(diǎn),等價(jià)于函數(shù)y=lnx與y=2ax﹣1的圖象有兩個交點(diǎn),在同一個坐標(biāo)系中作出它們的圖象(如圖)當(dāng)a=時(shí),直線y=2ax﹣1與y=lnx的圖象相切,由圖可知,當(dāng)0<a<時(shí),y=lnx與y=2ax﹣1的圖象有兩個交點(diǎn)則實(shí)數(shù)a的取值范圍是(0,)故選B6、A【解析】動點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩η髮?dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A7、B【解析】舉反例判斷A,解一元二次不等式確定B,由導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯;,B正確;,,C錯;命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個數(shù)2.故選:B8、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.9、A【解析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.10、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.11、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D12、C【解析】根據(jù)等比數(shù)列的前項(xiàng)和公式及等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因?yàn)?,所以,即,解得或,所以?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先由條件求出底面邊長和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設(shè)底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€側(cè)面的周長為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.14、①.②.點(diǎn)或點(diǎn)(填出其中一組即可)【解析】(1)以向量,,為基底分別表達(dá)出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點(diǎn)或點(diǎn)15、【解析】建立平面直角坐標(biāo)系,解得圖中N、Q的橫坐標(biāo),列方程組即可求得橢圓的a、c,進(jìn)而求得橢圓的離心率.【詳解】以A為原點(diǎn)建立平面直角坐標(biāo)系,則,,直線PR的方程為設(shè),由到直線PR的距離為1,得,解之得或(舍)則,又設(shè)直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。16、107【解析】根據(jù)等比數(shù)列和等差數(shù)列的通項(xiàng)公式,根據(jù)題意列方程可得,從而求出或,再根據(jù),確定,進(jìn)而求出,代入記得:.【詳解】由題意可設(shè)等比數(shù)列的公比為,首項(xiàng)為,由成等差數(shù)列可得:,代入可得:,解得:或,又因?yàn)椋字?,又因?yàn)椋?,所以,,故答案為?07.【點(diǎn)睛】本題考查了等差中項(xiàng)和等比數(shù)列的通項(xiàng)公式,考查了和的關(guān)系,同時(shí)考查了計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問1詳解】解:設(shè)的公差為d,因?yàn)?,可得,解得,所以,即?shù)列的通項(xiàng)公式為【小問2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),,故n的最小值為1218、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機(jī)變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨(dú)立事件的概率乘法公式分別求出對應(yīng)的概率,列出分布列即可求出數(shù)學(xué)期望【小問1詳解】從這5人中隨機(jī)抽取3人,恰有2人簡歷達(dá)標(biāo)的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以19、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結(jié)論,(2)由已知條件可證得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸建立空間直角坐標(biāo)系,利用空間向量求解【小問1詳解】證明:因?yàn)?所以,所以∥,因?yàn)槠矫妫矫?,所以∥平面,因?yàn)槠矫?,且平面面,所以∥,因?yàn)槠矫妫矫?,所以∥平面,【小?詳解】設(shè)的中點(diǎn)為,因?yàn)椤鱌DC是等邊三角形,所以,因?yàn)槠矫鍼DC⊥平面ABCD,且平面面,所以平面,因?yàn)槠矫?,所以,所以以為原點(diǎn),所在的直線分別為軸建立空間直角坐標(biāo)系,如圖所示,則,所以,假設(shè)存在這樣的點(diǎn),由已知得,則,所以,因?yàn)槠矫?,所以平面的一個法向量為,設(shè)平面的一個法向量為,則,令,則,則所以,整理得,解得(舍去),或,所以20、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時(shí),,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點(diǎn),且,當(dāng)時(shí),,g(x)單調(diào)遞減,當(dāng)時(shí),,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時(shí)取等號,而,∴,∴,即,∴當(dāng)時(shí),.【點(diǎn)睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計(jì)到隱零點(diǎn)的問題,需要掌握隱零點(diǎn)處理問題的常見思路和方法.21、(1);(2).【解析】(1)設(shè)出圓的一般方程,根據(jù)的坐標(biāo)滿足圓方程,待定系數(shù),即可求得圓方程;(2)根據(jù)(1)中所求圓方程,結(jié)合弦長公式,即可求得結(jié)果.【小問1詳解】設(shè)圓M的方程為,因?yàn)槎荚趫A上,則,解得,故圓M的方程為,也
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 局衛(wèi)生管理工作制度匯編
- 街道辦環(huán)境衛(wèi)生管理制度
- 醫(yī)療衛(wèi)生室管理制度
- 街道各衛(wèi)生管理制度
- 怎樣水衛(wèi)生管理制度
- 衛(wèi)生院老年病科管理制度
- 衛(wèi)生院平安建設(shè)制度
- 衛(wèi)生室冷藏藥品制度
- 衛(wèi)生院完整規(guī)章制度
- 衛(wèi)生院藥房工作管理制度
- 十年(2016-2025年)高考數(shù)學(xué)真題分類匯編:專題26 導(dǎo)數(shù)及其應(yīng)用解答題(原卷版)
- 2025年江蘇省常熟市中考物理試卷及答案詳解(名校卷)
- 靜脈輸液巡視制度課件
- 旅游景區(qū)商戶管理辦法
- 2025年甘肅省中考物理、化學(xué)綜合試卷真題(含標(biāo)準(zhǔn)答案)
- DLT5210.1-2021電力建設(shè)施工質(zhì)量驗(yàn)收規(guī)程第1部分-土建工程
- 機(jī)械設(shè)備租賃服務(wù)方案
- 樂理考試古今音樂對比試題及答案
- 電影放映年度自查報(bào)告
- 水泥窯協(xié)同處置危廢可行性研究報(bào)告
- 心內(nèi)介入治療護(hù)理
評論
0/150
提交評論