版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴州省數(shù)學高三上期末質量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三角形中,,,求()A. B. C. D.2.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.3.已知集合,集合,若,則()A. B. C. D.4.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.5.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.6.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.7.《易經(jīng)》包含著很多哲理,在信息學、天文學中都有廣泛的應用,《易經(jīng)》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.8.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.19.已知集合,則全集則下列結論正確的是()A. B. C. D.10.從5名學生中選出4名分別參加數(shù)學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.9611.已知向量,夾角為,,,則()A.2 B.4 C. D.12.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足則點構成的區(qū)域的面積為____,的最大值為_________14.函數(shù)在的零點個數(shù)為________.15.已知復數(shù),其中為虛數(shù)單位,若復數(shù)為純虛數(shù),則實數(shù)的值是__.16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求函數(shù)的最大值.18.(12分)設函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點,求證:.19.(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.20.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質量指數(shù)(AQI)的檢測數(shù)據(jù),結果統(tǒng)計如表:AQI空氣質量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質量造成的經(jīng)濟損失y(單位:元)與空氣質量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業(yè)9月每天因空氣質量造成的經(jīng)濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.2、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.3、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.4、A【解析】
將已知條件轉化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.5、A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.6、A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.7、B【解析】
由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎題.8、B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.9、D【解析】
化簡集合,根據(jù)對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.10、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎題.11、A【解析】
根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎題.12、B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結合求得區(qū)域面積以及目標函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎題.14、【解析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數(shù)的性質和函數(shù)的零點,屬于基礎題.15、2【解析】
由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復數(shù)為純虛數(shù),所以,解得.故答案為:2【點睛】本題主要考查純虛數(shù)定義的應用,屬基礎題.16、【解析】
依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值18、(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)求導得到,討論,,三種情況得到單調(diào)區(qū)間.(Ⅱ)設,要證,即證,,設,根據(jù)函數(shù)單調(diào)性得到證明.【詳解】(Ⅰ),令,,(1)當,即時,,,在上單調(diào)遞增;(2)當,即時,設的兩根為(),,①若,,時,,所以在和上單調(diào)遞增,時,,所以在上單調(diào)遞減,②若,,時,,所以在上單調(diào)遞減,時,,所以在上單調(diào)遞增.綜上,當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞減,在上單調(diào)遞增.(Ⅱ)不妨設,要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調(diào)遞增,所以,因為,所以,所以.【點睛】本題考查了函數(shù)單調(diào)性,證明不等式,意在考查學生的分類討論能力和計算能力.19、(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當時,將(為參數(shù))代入得,設直線l上A、B兩點所對應的參數(shù)為,中點M所對應的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.20、(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經(jīng)濟損失的期望和,最后7月、8月、9月經(jīng)濟損失總額的數(shù)學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟損失的數(shù)學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經(jīng)濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質量造成經(jīng)濟損失總額的數(shù)學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質量造成經(jīng)濟損失總額的數(shù)學期望會超過2.88萬元.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海政法學院單招(計算機)測試備考題庫附答案
- 變壓器鐵芯疊裝工沖突管理水平考核試卷含答案
- 水泥混凝土制品工安全文化模擬考核試卷含答案
- 礦用重型卡車輪胎換修工崗前基礎理論考核試卷含答案
- 魚糜制作工安全管理知識考核試卷含答案
- 家具制作工崗前決策力考核試卷含答案
- 2024年濰坊職業(yè)學院輔導員考試參考題庫附答案
- 企業(yè)員工招聘與離職手冊(標準版)
- 2024年焦作大學輔導員考試筆試真題匯編附答案
- 2024年甘孜職業(yè)學院輔導員考試筆試題庫附答案
- 中建項目安全總監(jiān)競聘
- 中建給排水施工方案EPC項目
- 公司股權分配方案模板
- 電氣工程及自動化基于PLC的皮帶集中控制系統(tǒng)設計
- 舊設備拆除方案
- 醫(yī)學教材 常見輸液反應的處理(急性肺水腫)
- FURUNO 電子海圖 完整題庫
- 急診科護士長述職報告
- 分子對稱性和點群
- 物業(yè)前臺崗位職責6篇
- 《現(xiàn)代田徑運動技術與訓練》讀書筆記
評論
0/150
提交評論