版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省吉林市蛟河市一中2025屆高二上數(shù)學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓的半徑為,平面上一定點到圓心的距離,是圓上任意一點.線段的垂直平分線和直線相交于點,設點在圓上運動時,點的軌跡為,當時,軌跡對應曲線的離心率取值范圍為()A. B.C. D.2.已知隨機變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.323.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據(jù)莖葉圖能得到的統(tǒng)計結論的編號為()A.①③ B.①④C.②③ D.②④4.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.5.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數(shù)據(jù)如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據(jù)表中的數(shù)據(jù)用最小二乘法求得y關于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.56.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.7.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.8.設為空間中的四個不同點,則“中有三點在同一條直線上”是“在同一個平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件9.拋物線的焦點到直線的距離為,則()A.1 B.2C. D.410.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.11.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.512.等差數(shù)列中,若,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個無蓋的正方體盒子展開圖,A,B,C,D是展開圖上的四點,BD則在正方體盒子中,AD與平面ABC所成角的正弦值為___________.14.某校周五的課程表設計中,要求安排8節(jié)課(上午4節(jié)、下午4節(jié)),分別安排語文、數(shù)學、英語、物理、化學、生物、政治、歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學和英語在安排時必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有______15.已知函數(shù),則曲線在處的切線方程為___________.16.設,分別是橢圓C:的左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積18.(12分)已知函數(shù).(1)求的單調區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.19.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點,(1)證明:;(2)設平面平面,求l與平面MND所成角的正弦值20.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a取值范圍.①關于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)21.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關于軸的對稱點為.求的最大值及相應的.22.(10分)設P是拋物線上一個動點,F(xiàn)為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分點A在圓內,圓外兩種情況,根據(jù)中垂線的性質,結合橢圓、雙曲線的定義可判斷軌跡,再由離心率計算即可求解.【詳解】當A在圓內時,如圖,,所以的軌跡是以O,A為焦點的橢圓,其中,,此時,,.當A在圓外時,如圖,因為,所以軌跡是以O,A為焦點的雙曲線,其中,,此時,,.綜上可知,.故選:D2、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C3、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B4、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A5、B【解析】求出樣本中心的橫坐標,代入回歸直線方程,求出樣本中心的縱坐標,然后求解即可【詳解】因為,代入回歸直線方程為,所以,,于是得,解得故選:B6、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C7、B【解析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.8、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過一條直線和直線外一點,有且只有一個平面,可得在同一平面,故充分條件成立;由公理2的推論:過兩條平行直線,有且只有一個平面,可得,當時,同一個平面上,但中無三點共線,故必要條件不成立;故選:A【點睛】本題考查點線面的位置關系和充分必要條件的判斷,重點考查公理2及其推論;屬于中檔題;公理2的三個推論:經(jīng)過一條直線和直線外一點,有且只有一個平面;經(jīng)過兩條平行直線,有且只有一個平面;經(jīng)過兩條相交直線,有且只有一個平面;9、B【解析】首先確定拋物線的焦點坐標,然后結合點到直線距離公式可得的值.【詳解】拋物線的焦點坐標為,其到直線的距離:,解得:(舍去).故選:B.10、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D11、C【解析】直線l過定點D(1,1),當時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點,∵,故D在圓C內部,直線l始終與圓相交,當時,直線l被圓截得的弦長最短,,弦長=.故選:C.12、C【解析】由等差數(shù)列下標和性質可得.【詳解】因為,,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先復原正方體,再構造線面角后可求正弦值.【詳解】復原后的正方體如圖所示,設所在面的正方形的余下的一個頂點為,連接,則平面,故為AD與平面ABC所成角,而,故為AD與平面ABC所成角的正弦值為.故答案為:.14、2400種【解析】分三步,第一步:根據(jù)題意從第一個位置和最后一個位置選一個位置安排生物,第二步:將數(shù)學和英語捆綁排列,第三步:將剩下的5節(jié)課全排列,最后利用分步乘法計數(shù)原理求解.【詳解】分步排列,第一步:因為由題意知生物只能出現(xiàn)在第一節(jié)或最后一節(jié),所以從第一個位置和最后一個位置選一個位置安排生物,有(種)編排方法;第二步:因為數(shù)學和英語在安排時必須相鄰,注意數(shù)學和英語之間還有一個排列,所以有(種)編排方法;第三步:剩下的5節(jié)課安排5科課程,有(種)編排方法根據(jù)分步乘法計數(shù)原理知共有(種)編排方法故答案為:2400種15、【解析】求出函數(shù)的導函數(shù),即可求出切線的斜率,再利用點斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點處的切線方程為,即.故答案為:.16、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】(1)首先求出函數(shù)的導函數(shù),即可求出切線的斜率,再利用點斜式求出切線方程;(2)首先求出兩函數(shù)的交點坐標,再利用定積分及微積分基本定理計算可得;【小問1詳解】解:因為,所以,所以切線的斜率,切線過點,切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積18、(1)單調遞增區(qū)間為;單調減區(qū)間為和;(2);.【解析】(1)求出導函數(shù),令,求出單調遞增區(qū)間;令,求出單調遞減區(qū)間.(2)求出函數(shù)的單調區(qū)間,利用函數(shù)的單調性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調遞增區(qū)間為,單調減區(qū)間為和;2由在單調遞減,在單調遞增,所以,而,,故最大值是.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因為,設l與平面MND所成角為,則20、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當且僅當時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.21、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結果.(2)假設直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質可得結果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.22、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年泉州工藝美術職業(yè)學院單招職業(yè)技能測試題庫附答案解析
- 2025年臺州職業(yè)技術學院馬克思主義基本原理概論期末考試模擬題附答案解析(奪冠)
- 2025年武漢警官職業(yè)學院單招職業(yè)傾向性考試題庫附答案解析
- 2025年南開大學馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2025年內蒙古體育職業(yè)學院單招職業(yè)技能考試題庫附答案解析
- 2024年遂寧職業(yè)學院馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2025年漳州職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案解析
- 2025年貴州醫(yī)科大學馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2025年詔安縣幼兒園教師招教考試備考題庫帶答案解析(必刷)
- 2024年渤海石油職業(yè)學院馬克思主義基本原理概論期末考試題附答案解析(必刷)
- (15)普通高中美術課程標準日常修訂版(2017年版2025年修訂)
- 四年級數(shù)學除法三位數(shù)除以兩位數(shù)100道題 整除 帶答案
- 村委會 工作總結
- 廠房以租代售合同范本
- 2025年“漂亮飯”社媒觀察報告-藝恩
- 《TCEC1742018分布式儲能系統(tǒng)遠程集中監(jiān)控技術規(guī)范》
- 護理急診進修匯報
- SOAP病歷書寫課件
- 2025年時事政治考試題庫及參考答案(100題)
- 2025年三年級語文上冊期末測試卷:成語接龍競賽訓練試題
- 縫紉工作業(yè)指導書
評論
0/150
提交評論