版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆海南省臨高縣二中數(shù)學高二上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,,共面,則λ等于()A. B.3C. D.92.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.3.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知數(shù)列是公差為等差數(shù)列,,則()A.1 B.3C.6 D.95.已知且,則下列不等式恒成立的是A. B.C. D.6.高中生在假期參加志愿者活動,既能服務社會又能鍛煉能力.某同學計劃在福利院、社區(qū)、圖書館和醫(yī)院中任選兩個單位參加志愿者活動,則參加圖書館活動的概率為()A. B.C. D.7.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.8.已知函數(shù)的值域為,則實數(shù)的取值范圍是()A. B.C. D.9.設兩個變量與之間具有線性相關關系,相關系數(shù)為,回歸方程為,那么必有()A.與符號相同 B.與符號相同C.與符號相反 D.與符號相反10.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.11.設變量滿足約束條件:,則的最小值()A. B.C. D.12.已知傾斜角為的直線與雙曲線,相交于,兩點,是弦的中點,則雙曲線的漸近線的斜率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與曲線,在曲線上隨機取一點,則點到直線的距離不大于的概率為__________.14.已知正三棱柱中,底面積為,一個側面的周長為,則正三棱柱外接球的表面積為______.15.已知直線,,為拋物線上一點,則到這兩條直線距離之和的最小值為___________.16.的展開式中的系數(shù)為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別是,點P是橢圓C上任一點,若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點,若過點且斜率不為0的直線交C于M,N兩點,證明:直線與的交點在一條定直線上18.(12分)已知p:,q:(1)若p是q的必要不充分條件,求實數(shù)m的范圍;(2)若是的必要不充分條件,求實數(shù)m的范圍19.(12分)設函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.20.(12分)已知橢圓的左、右焦點分別為,,離心率為,過的直線與橢圓交于,兩點,若的周長為8.(1)求橢圓的標準方程;(2)設為橢圓上的動點,過原點作直線與橢圓分別交于點、(點不在直線上),求面積的最大值.21.(12分)已知橢圓的短軸長為2,左、右焦點分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標準方程;(2)若A,B為橢圓C上位于x軸同側的兩點,且,共線,求四邊形的面積的最大值22.(10分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,,共面,設,列方程組能求出λ的值【詳解】∵,,共面,∴設(實數(shù)m、n),即,∴,解得故選:C2、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C3、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.4、D【解析】結合等差數(shù)列的通項公式求得.【詳解】設公差,.故選:D5、C【解析】∵且,∴∴選C6、D【解析】對4個單位分別編號,利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書館和醫(yī)院分別為A,B,C,D,從4個單位中任選兩個的試驗有AB,AC,AD,BC,BD,CD,共6個基本事件,它們等可能,其中有參加圖書館活動的事件有AC,BC,CD,共3個基本事件,所以參加圖書館活動的概率.故選:D7、B【解析】由題意得到,根據(jù)等比數(shù)列的性質得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質,可得則.故選:B.8、D【解析】求出函數(shù)在時值的集合,函數(shù)在時值的集合,再由已知并借助集合包含關系即可作答.【詳解】當時,在上單調遞增,,,則在上值的集合是,當時,,,當時,,當時,,即在上單調遞減,在上單調遞增,,,則在上值的集合為,因函數(shù)的值域為,于是得,則,解得,所以實數(shù)的取值范圍是.故選:D9、A【解析】利用相關系數(shù)的性質,分析即得解【詳解】相關系數(shù)r為正,表示正相關,回歸直線方程上升,r為負,表示負相關,回歸直線方程下降,與r的符號相同故選:A10、D【解析】由雙曲線的定義可設,,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結合雙曲線性質可以得到,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故,對三角形,用余弦定理,得到,結合,可得,,,代入上式子中,得到,即,結合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于??碱}型.11、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當經過A時,的最小值為-8,故選D.12、A【解析】依據(jù)點差法即可求得的關系,進而即可得到雙曲線的漸近線的斜率.【詳解】設,則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】畫出示意圖,根據(jù)圖形分析可知點在陰影部分所對的劣弧上,由幾何概型可求出.【詳解】作出示意圖曲線是圓心為原點,半徑為2的一個半圓.圓心到直線距離,而點到直線的距離為,故若點到直線的距離不大于,則點在陰影部分所對的劣弧上,由幾何概型的概率計算公式知,所求概率為.故答案為:.【點睛】本題考查幾何概型的概率計算,屬于中檔題.14、【解析】首先由條件求出底面邊長和高,然后設、分別為上、下底面的的中心,連接,設的中點為,則點為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因為一個側面的周長為,所以設、分別為上、下底面的的中心,連接,設的中點為則點為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點睛】關鍵點睛:求幾何體的外接球半徑的關鍵是根據(jù)幾何體的性質找出球心的位置.15、【解析】過作,垂足分別為,由直線為拋物線的準線,轉化,當三點共線時,取得最小值【詳解】過作,垂足分別為拋物線的焦點為直線為拋物線的準線由拋物線的定義,故,當三點共線時,取得最小值故最小值為點到直線的距離:故答案為:16、4【解析】將代數(shù)式變形為,寫出展開式的通項,令的指數(shù)為,求得參數(shù)的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數(shù)為.由展開式的通項為,令,得展開式中的系數(shù)為.所以的展開式中的系數(shù)為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設直線MN的方程為x=my+1,設,用“設而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設直線MN的方程為x=my+1.設,由,消去y得:,所以.所以.因為直線AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點在直線上.【點睛】(1)待定系數(shù)法可以求二次曲線的標準方程;(2)"設而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.18、(1),;(2),【解析】解不等式,(1)由題意得,從而求得;(2)由題意可轉化為是的充分不必要條件,從而得到,化簡即可【小問1詳解】解不等式得,是的必要不充分條件,,解得,,即實數(shù)的范圍為,;小問2詳解】是的必要不充分條件,是的充分不必要條件,故,解得,,即實數(shù)的范圍為,19、(1)(2)【解析】(1)存在兩個極值點,等價于其導函數(shù)有兩個相異零點;(2)適當構造函數(shù),并注意與關系,轉化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點、,且,關于的方程,即在內有兩個不等實根,令,,即,,實數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個極值點,由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設,則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點睛】關鍵點點睛:本題考查導函數(shù),函數(shù)的單調性,最值,不等式證明,考查學生分析解決問題的能力,解題的關鍵是將恒成立,轉化為恒成立,化簡,令,則化為,然后構造函數(shù),利用導數(shù)求出其最大值即可,屬于較難題20、(1);(2).【解析】(1)根據(jù)周長可求,再根據(jù)離心率可求,求出后可求橢圓的方程.(2)當直線軸時,計算可得的面積的最大值為,直線不垂直軸時,可設,聯(lián)立直線方程和橢圓方程可求,設與平行且與橢圓相切的直線為:,結合橢圓方程可求的關系,從而求出該直線到直線的距離,從而可求的面積的最大值為.【詳解】(1)由橢圓的定義可知,的周長為,∴,,又離心率為,∴,,所以橢圓方程為.(2)當直線軸時,;當直線不垂直軸時,設,,,∴.設與平行且與橢圓相切的直線為:,,∵,∴,∴距的最大距離為,∴,綜上,面積的最大值為.【點睛】方法點睛:求橢圓的標準方程,關鍵是基本量的確定,而面積的最值的計算,則可以轉化為與已知直線平行且與橢圓相切的直線與已知直線的距離來計算,此類轉化為面積最值計算過程的常規(guī)轉化.21、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標準方程.(2)延長,交橢圓C于點.設出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關系,根據(jù)對稱性求得四邊形的面積的表達式,利用換元法,結合基本不等式求得四邊形的面積的最大值.【小問1詳解】由題可知,即,因為過且垂直于長軸的弦長為1,所以,所以所以橢圓C的標準方程為【小問2詳解】因為,共線,所以延長,交橢圓C于點.設,由(1)可知,可設直線的方程為聯(lián)立,消去x可得,所以,由對稱性可知設與間的距離為d,則四邊形的面積令,則.因為,當且僅當時取等號,所以,即四邊形的面積的最大值為2【點睛】在橢圓、雙曲線、拋物線中,求三角形、四邊形面積的最值問題,求解策略是:首先結合弦長公式、點到直線距離公式等求得面積的表達式;然后利用基本不等式、二次函數(shù)的性質等知識來求得最值.22、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 費用報銷制度
- 評優(yōu)評先制度
- 2025 小學四年級科學下冊合作學習的組織與評價課件
- 老年人護理用專業(yè)與愛心守護長者健康
- 2026北京人保財險分公司校園招聘參考考試題庫附答案解析
- 2026年度青島市市南區(qū)所屬事業(yè)單位公開招聘工作人員(25名)參考考試題庫附答案解析
- 2026山東事業(yè)單位統(tǒng)考威海經濟技術開發(fā)區(qū)鎮(zhèn)街招聘初級綜合類崗位15人參考考試試題附答案解析
- 2026交通運輸部所屬事業(yè)單位第四批招聘160人參考考試題庫附答案解析
- 2026山東濟寧金鄉(xiāng)縣事業(yè)單位招聘初級綜合類崗位人員備考考試題庫附答案解析
- 2026臨沂職業(yè)學院招聘教師和教輔人員22人參考考試試題附答案解析
- 2026年春季第二學期學校德育工作計劃及安排表:馳聘春程踐初心德育賦能強少年
- 2026廣東廣州市海珠區(qū)住房和建設局招聘雇員7人筆試參考題庫及答案解析
- 話語體系構建的文化外交策略課題申報書
- 云南師大附中2026屆高三1月高考適應性月考卷英語(六)含答案
- 海南2025年中國熱帶農業(yè)科學院橡膠研究所第一批招聘16人(第1號)筆試歷年參考題庫附帶答案詳解
- 2025-2026人教版數(shù)學七年級上冊期末模擬試卷(含答案)
- 2026年九江市八里湖新區(qū)國有企業(yè)面向社會公開招聘工作人員【48人】筆試參考題庫及答案解析
- 廣告行業(yè)法律法規(guī)與行業(yè)規(guī)范(標準版)
- 上海市虹口區(qū)2025-2026學年高一上學期期末語文試卷(含答案)
- 2025年CFA二級道德與專業(yè)標準題
- 2026年鄭州電力高等??茖W校單招職業(yè)技能測試題庫新版
評論
0/150
提交評論