2023-2024學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)單元速記·巧練(湘教版)第二章 整式的乘法(知識(shí)歸納+題型突破)(原卷版)_第1頁
2023-2024學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)單元速記·巧練(湘教版)第二章 整式的乘法(知識(shí)歸納+題型突破)(原卷版)_第2頁
2023-2024學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)單元速記·巧練(湘教版)第二章 整式的乘法(知識(shí)歸納+題型突破)(原卷版)_第3頁
2023-2024學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)單元速記·巧練(湘教版)第二章 整式的乘法(知識(shí)歸納+題型突破)(原卷版)_第4頁
2023-2024學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)單元速記·巧練(湘教版)第二章 整式的乘法(知識(shí)歸納+題型突破)(原卷版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二章整式的乘法(知識(shí)歸納+題型突破)1、了解整數(shù)指數(shù)冪的意義和基本性質(zhì);會(huì)用科學(xué)記數(shù)法表示數(shù)(包括在計(jì)算器上表示).2、理解整式的概念,掌握合并同類項(xiàng)和去括號(hào)的法則;能進(jìn)行簡單的整式加減運(yùn)算,能進(jìn)行簡單的整式乘法運(yùn)算(多項(xiàng)式乘法僅限于一次式之間和一次式與二次式的乘法).3、理解乘法公式a+ba?b=1、概念(1)單項(xiàng)式:像x、7、,這種數(shù)與字母的積叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)叫做這個(gè)單項(xiàng)式的次數(shù)。單項(xiàng)式的系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫單項(xiàng)式的系數(shù)。(2)多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式的項(xiàng):多項(xiàng)式中每一個(gè)單項(xiàng)式都叫多項(xiàng)式的項(xiàng)。一個(gè)多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式。多項(xiàng)式的次數(shù):多項(xiàng)式里,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。不含字母的項(xiàng)叫常數(shù)項(xiàng)。升(降)冪排列:把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小(大)到大(小)的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升(降)冪排列。(3)同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。2、運(yùn)算(1)整式的加減:合并同類項(xiàng):把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母及字母的指數(shù)不變。去括號(hào)法則:括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不變;括號(hào)前面是“–”號(hào),把括號(hào)和它前面的“–”號(hào)去掉,括號(hào)里的各項(xiàng)都變號(hào)。添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變;括號(hào)前面是“–”號(hào),括到括號(hào)里的各項(xiàng)都變號(hào)。整式的加減實(shí)際上就是合并同類項(xiàng),在運(yùn)算時(shí),如果遇到括號(hào),先去括號(hào),再合并同類項(xiàng)。(2)整式的乘除:冪的運(yùn)算法則:其中m、n都是正整數(shù)同底數(shù)冪相乘:;同底數(shù)冪相除:;冪的乘方:積的乘方:。單項(xiàng)式乘以單項(xiàng)式:用它們系數(shù)的積作為積的系數(shù),對(duì)于相同的字母,用它們的指數(shù)的和作為這個(gè)字母的指數(shù);對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式。單項(xiàng)式乘以多項(xiàng)式:就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式乘以多項(xiàng)式:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。單項(xiàng)除單項(xiàng)式:把系數(shù),同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有字母,則連同它的指數(shù)作為商的一個(gè)因式。多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng),再把所得的商相加。乘法公式:平方差公式:;完全平方公式:,題型一同底數(shù)冪的乘法【例1】(2024上·廣東廣州·八年級(jí)統(tǒng)考期末)計(jì)算的結(jié)果是(

).A. B. C. D.【例2】(2023上·海南??凇ぐ四昙?jí)校考期中)在等式中,括號(hào)內(nèi)所填的代數(shù)式應(yīng)當(dāng)是(

).A. B. C. D.【例3】(2024上·上海浦東新·七年級(jí)??计谀┑挠?jì)算結(jié)果是(

)A. B. C. D.【例4】(2023上·河南周口·七年級(jí)周口市第四初級(jí)中學(xué)??计谥校┰趯W(xué)習(xí)第一章有理數(shù)時(shí),類比小學(xué)兩個(gè)正數(shù)的運(yùn)算法則學(xué)習(xí)了有理數(shù)的加減法、有理數(shù)的乘除法,在第二章整式的加減時(shí),類比第一章有理數(shù)的學(xué)習(xí)過程學(xué)習(xí)了整式的加減,那么整式的乘法是否可以類比有理數(shù)的乘法進(jìn)行學(xué)習(xí)呢?我們從特殊情況入手對(duì)兩個(gè)同底數(shù)冪相乘進(jìn)行探究.(1)探究根據(jù)乘方的意義填空,觀察計(jì)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?①,②,③,(2)規(guī)律(都是正整數(shù)).即______.(文字表達(dá))(3)應(yīng)用①計(jì)算;②把看成一個(gè)整體,計(jì)算.鞏固訓(xùn)練:1.(2023上·重慶江北·八年級(jí)??计谥校┯?jì)算:的結(jié)果是(

)A. B. C. D.a(chǎn)2.(2024上·上海浦東新·七年級(jí)??计谀┮阎瑒t下列給出之間的數(shù)量關(guān)系式中,錯(cuò)誤的是(

)A. B. C. D.3.(2024上·黑龍江哈爾濱·八年級(jí)統(tǒng)考期末)已知,,m,n為正整數(shù),則為(

).A. B. C. D.4.(2023上·甘肅武威·八年級(jí)校考期末)已知,,求的值是(

)A.5 B.10 C.15 D.205.(2024上·廣東廣州·八年級(jí)統(tǒng)考期末)若,則.6.(2023上·上海浦東新·七年級(jí)校聯(lián)考期末)已知:,那么.7.(2023上·內(nèi)蒙古呼和浩特·八年級(jí)呼市四中??计谥校┤簦?,則;當(dāng)時(shí),則.8.(2023上·吉林長春·八年級(jí)統(tǒng)考期末)世界上最大的金字塔——胡夫金字塔高達(dá)米,底邊長米,用了約塊大石塊,每塊重約千克,請(qǐng)問:胡夫金字塔總重約為多少千克?9.(2023上·四川涼山·七年級(jí)??茧A段練習(xí))請(qǐng)閱讀以下材料解決相關(guān)問題:已知,,例如,.(1)①_____.②______________.③(2),(3)若,求的值題型二冪的乘方與積的乘方【例1】(2024上·湖北武漢·八年級(jí)校考階段練習(xí))已知,,為正整數(shù),則()A. B. C. D.【例2】(2023上·天津?yàn)I海新·八年級(jí)統(tǒng)考期末)計(jì)算的結(jié)果等于()A. B. C. D.【例3】(2023上·內(nèi)蒙古通遼·八年級(jí)??计谥校┮阎瑒t的值為(

)A.16 B.25 C.32 D.64【例4】(2023上·河南洛陽·八年級(jí)??计谥校┮阎?,,則a,b,c的大小關(guān)系是(

)A. B. C. D.鞏固訓(xùn)練1.(2023上·內(nèi)蒙古烏蘭察布·八年級(jí)??计谀?/p>

)A.1 B. C. D.2.(2023上·黑龍江哈爾濱·八年級(jí)統(tǒng)考期末)計(jì)算的結(jié)果是(

)A. B. C. D.3.(2024上·河南南陽·八年級(jí)統(tǒng)考期末)已知,,則,的大小關(guān)系是(請(qǐng)用字母表示,并用“<”連接).4.(2023上·河南南陽·八年級(jí)??茧A段練習(xí))如果,,則.5.(2024上·天津河西·八年級(jí)統(tǒng)考期末)若,則.6.(2024上·北京朝陽·八年級(jí)北京市陳經(jīng)綸中學(xué)分校校考期中)比較大?。海ㄌ睢啊?、“”或“”)7.(2023上·陜西西安·七年級(jí)??茧A段練習(xí))已知,則之間的等量關(guān)系是.8.(2023上·遼寧大連·八年級(jí)統(tǒng)考期末)“數(shù)與式大小的比較”一直是數(shù)學(xué)體系中的一個(gè)重要的研究課題.七年級(jí)的時(shí)候?qū)τ跀?shù)的大小比較,我們借助數(shù)軸獲取了“數(shù)軸上表示的兩個(gè)數(shù),右邊的總比左邊的大”進(jìn)而得出“正數(shù)大于零大于一切負(fù)數(shù)”.本學(xué)期我們研究了代數(shù)式大小比較,通??梢钥紤]將兩個(gè)代數(shù)式作差和0比較或者作商和1比較.更是通過靈活運(yùn)用整式的乘除對(duì)于一些特殊的數(shù)與式進(jìn)行了大小比較,例如:比較和的大小.我們是這么做的“∵,∵∴∴”問題得以解決,請(qǐng)同學(xué)們完成下面3個(gè)小題:(1)試比較和的大?。?2)若,,試比較a,b的大小;(3)若,且,試比較與的大小.9.(2024上·北京朝陽·八年級(jí)北京市陳經(jīng)綸中學(xué)分校校考期中)已知,求的值.10.(2023上·廣東惠州·八年級(jí)校考期中)(1)若,,求的值;(2)已知,求的值.題型三單項(xiàng)式、多項(xiàng)式的乘法【例1】(2024上·天津西青·八年級(jí)統(tǒng)考期末)計(jì)算的結(jié)果是(

)A. B. C. D.【例2】(2023下·江蘇·七年級(jí)專題練習(xí))計(jì)算:.【例3】(2023上·廣東廣州·八年級(jí)廣東廣雅中學(xué)??计谥校┯?jì)算:.鞏固訓(xùn)練1.(2023上·河南商丘·九年級(jí)校聯(lián)考階段練習(xí))計(jì)算:.2.(2023上·江西贛州·八年級(jí)校考階段練習(xí))已知與的積與是同類項(xiàng),求m,n的值.3.(2024下·全國·七年級(jí)假期作業(yè))已知單項(xiàng)式與的積與是同類項(xiàng),求,的值.4.(2023上·吉林·八年級(jí)統(tǒng)考期末)計(jì)算:.5.(2023上·福建龍巖·八年級(jí)??茧A段練習(xí))計(jì)算:(1);(2).6.(2024上·遼寧大連·八年級(jí)統(tǒng)考期末)計(jì)算:.7.(2023上·四川瀘州·八年級(jí)四川省瀘縣第一中學(xué)??计谥校┯?jì)算:題型四不含某項(xiàng)求字母的值【例1】(2024上·湖北武漢·八年級(jí)??茧A段練習(xí))若的展開式中不含x的二次項(xiàng),則()A.0 B.2 C.2.5 D.鞏固訓(xùn)練1.(2023上·湖北襄陽·八年級(jí)統(tǒng)考階段練習(xí))若的結(jié)果不含x的一次項(xiàng),則a的值為(

)A.0 B.1 C.2 D.2.(2023上·河南洛陽·八年級(jí)??计谥校┑某朔e中不含和項(xiàng),則的值為(

)A.

B.

C.

D.

3.(2023上·江西南昌·八年級(jí)??计谀┤舻某朔e中不含x二次項(xiàng),則a的值為.4.(2024上·北京海淀·八年級(jí)北京市師達(dá)中學(xué)??计谥校┤絷P(guān)于的多項(xiàng)式展開后不含有一次項(xiàng),則實(shí)數(shù)的值為.5.(2023上·河南南陽·八年級(jí)??茧A段練習(xí))若的展開式中不含和項(xiàng),求m,n的值.題型五多項(xiàng)式乘多項(xiàng)式與圖形面積【例1】(2023上·河南商丘·八年級(jí)校聯(lián)考階段練習(xí))如圖,正方形卡片A類,B類和長方形卡片C類若干張,如果要拼一個(gè)長為,寬為的大長方形,則需要B類卡片(

)A.2張 B.3張 C.5張 D.7張【例2】(2024上·黑龍江綏化·八年級(jí)統(tǒng)考期末)千年古鎮(zhèn)趙化開發(fā)的鑫城小區(qū)的內(nèi)壩是一塊長為米,寬為米的長方形地,物業(yè)部門計(jì)劃將內(nèi)壩進(jìn)行綠化(如圖陰影部分),中間部分將修建一仿古小景點(diǎn)(如圖中間的長方形),則綠化的面積是多少平方米?并求出當(dāng),時(shí)的綠化面積.

鞏固訓(xùn)練1.(2024上·北京大興·八年級(jí)統(tǒng)考期末)如圖,某小區(qū)規(guī)劃在邊長為的正方形場地上,修建兩條寬為的甬道,其余部分種草,則甬道所占的面積(單位:)是(

)A. B. C. D.2.(2023上·上海青浦·七年級(jí)統(tǒng)考期末)如圖,現(xiàn)有邊長為a的正方形A、邊長為b的正方形B和長為2b寬為a的長方形C的三類紙片(其中).用這三類紙片拼一個(gè)長為、寬為的長方形(不重疊且不留縫隙),那么需要C類紙片張.3.(2023上·河南南陽·八年級(jí)統(tǒng)考期中)現(xiàn)有甲、乙、丙三種卡片各若干張,其中甲、丙為正方形卡片,乙為長方形卡片,卡片的邊長如圖1所示().某同學(xué)分別用6張卡片拼出了兩個(gè)長方形(不重疊無縫隙),如圖2和圖3,其面積分別為.(1)①請(qǐng)用含的式子分別表示,即______,______;②當(dāng)時(shí),求的值;(2)比較與的大小,并說明理由.4.(2023上·吉林長春·八年級(jí)??计谀┤鐖D,某社區(qū)有兩塊相連的長方形空地,一塊長為,寬為;另一塊長為,寬為.現(xiàn)將兩塊空地進(jìn)行改造,計(jì)劃在中間邊長為的正方形(陰影部分)中種花,其余部分種植草坪.(1)求計(jì)劃種植草坪的面積;(2)已知,,若種植草坪的價(jià)格為30元/,求種植草坪應(yīng)投入的資金是多少元?題型六多項(xiàng)式乘多項(xiàng)式:化簡求值【例1】(2023上·內(nèi)蒙古巴彥淖爾·八年級(jí)??茧A段練習(xí))化簡,其中【例2】(2023上·北京海淀·八年級(jí)北大附中??计谥校┮阎?,求的值.鞏固訓(xùn)練1.(2023上·山東德州·八年級(jí)校考期中)先化簡,再求值:,其中.2.(2023上·廣東廣州·八年級(jí)校聯(lián)考期中)先化簡,再求值:,其中.3.(2023上·廣西南寧·八年級(jí)南寧市天桃實(shí)驗(yàn)學(xué)校??计谥校┫然?,再求值:,其中.4.(2023上·福建福州·八年級(jí)??计谥校┗喦笾担?,其中,5.(2023上·北京海淀·八年級(jí)首都師范大學(xué)附屬中學(xué)校考期中)已知,求的值.6.(2023上·北京海淀·八年級(jí)北京交通大學(xué)附屬中學(xué)校考期中)已知,求的值.7.(2023上·黑龍江哈爾濱·八年級(jí)哈爾濱市第十七中學(xué)校??计谥校┗喦笾担海渲校}型七多項(xiàng)式乘法中的規(guī)律性問題【例1】(2023上·廣東廣州·八年級(jí)廣州市真光中學(xué)??茧A段練習(xí))我國宋代數(shù)學(xué)家楊輝所著《詳解九章算法》中記載了用如圖所示的三角形解釋了二項(xiàng)和的乘方展開式中的系數(shù)規(guī)律,我們把這種數(shù)字三角形叫做“楊輝三角”,請(qǐng)你利用楊輝三角,計(jì)算的展開式中,含項(xiàng)的系數(shù)是(

)1…………1…………………1

1………1

2

1………………1

3

3

1……1

4

6

4

1A.15 B. C.6 D.【例2】(2023·全國·八年級(jí)專題練習(xí))觀察下列等式:,,,……,利用你發(fā)現(xiàn)的規(guī)律回答:若,則的值是(

)A. B.0 C.1 D.【例3】(2023上·北京東城·八年級(jí)匯文中學(xué)??计谥校┮阎?,,根據(jù)前面各式的規(guī)律,可得:的值是.【例4】(2023下·湖南張家界·七年級(jí)統(tǒng)考期末)根據(jù),,,…的規(guī)律,則可以得出的末位數(shù)字是.鞏固訓(xùn)練1.(2023上·甘肅定西·八年級(jí)校聯(lián)考階段練習(xí))我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)式的展開式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”根據(jù)“楊輝三角”請(qǐng)計(jì)算的展開式中第三項(xiàng)的系數(shù)為(

)A.45 B.55 C.2017 D.20182.(2023上·山西臨汾·八年級(jí)統(tǒng)考階段練習(xí))觀察下列等式:,,,……,利用你發(fā)現(xiàn)的規(guī)律回答:若,則的值是.3.(2023下·山東青島·七年級(jí)??茧A段練習(xí))數(shù)學(xué)興趣小組發(fā)現(xiàn):利用你發(fā)現(xiàn)的規(guī)律:求:.4.(2023上·河南許昌·八年級(jí)校聯(lián)考階段練習(xí))我國著名數(shù)學(xué)家華羅庚談到,我國古代數(shù)學(xué)的許多成就和發(fā)展都居世界前列,“楊輝三角”就是一例。如下圖所示的“楊輝三角”告訴了我們二項(xiàng)式乘方展開式的系數(shù)規(guī)律,如:第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)展開式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1,3,3,1恰好對(duì)應(yīng)著的系數(shù).根據(jù)數(shù)表中前四行的數(shù)字所反映的規(guī)律計(jì)算求值:.5.(2023上·四川宜賓·八年級(jí)??茧A段練習(xí))我國南宋時(shí)期杰出的數(shù)學(xué)家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了為非負(fù)整數(shù))、的展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律,由此規(guī)律可解決如下問題:(1)展開式共有_______項(xiàng),第19項(xiàng)系數(shù)為_______;(2)根據(jù)上面的規(guī)律,寫出的展開式:_______;(3)利用上面的規(guī)律計(jì)算:;(4)假如今天是星期四,那么再過天是星期_______.6.(2023上·新疆喀什·八年級(jí)期末)(1)計(jì)算并觀察下列各式:;;;(2)從上面的算式及計(jì)算結(jié)果,你發(fā)現(xiàn)了什么?請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫下面的空格.;(3)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:.7.(2023上·四川宜賓·八年級(jí)??茧A段練習(xí))閱讀下列解題過程:

......(1)試求的值(2)判斷的值的個(gè)位數(shù)是幾?8.(2023上·四川內(nèi)江·八年級(jí)校考期中)閱讀下列材料,并解決有關(guān)問題.我們知道展開后等于,我們可以利用多項(xiàng)式乘法法則將展開.如果進(jìn)一步,要展開,,你一定發(fā)現(xiàn)解決上述問題需要大量的計(jì)算,是否有簡單的方法呢?我們不妨找找規(guī)律!如果將(n為非負(fù)整數(shù))的每一項(xiàng)按字母a的次數(shù)由大到小排列,就可以得到下面的等式:計(jì)算

結(jié)果的項(xiàng)數(shù)

各項(xiàng)系數(shù)

1

1

2

1

1

3

1

2

1

4

1

3

3

1(1)你能根據(jù)上表的規(guī)律寫出,的結(jié)果嗎?=__________________;=_____________________;(2)請(qǐng)你利用上表的規(guī)律求出下式的計(jì)算結(jié)果:.9.(2023上·四川宜賓·八年級(jí)校考階段練習(xí))探索題:

……(1)當(dāng)時(shí),=.(2)試求:的值.(3)判斷的值個(gè)位數(shù)字是.題型八平方差公式【例1】(2024上·河北石家莊·八年級(jí)統(tǒng)考階段練習(xí))計(jì)算的結(jié)果為(

)A. B. C. D.【例2】(2024上·天津河西·八年級(jí)統(tǒng)考期末)計(jì)算:.【例3】(2023上·河北廊坊·八年級(jí)校考期末)認(rèn)真觀察下面這些等式,按其規(guī)律,完成下列各小題:①;②;③;④______;…(1)將橫線上的等式補(bǔ)充完整;(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)的正偶數(shù)為,(n為正整數(shù)),則它們的平方差是4的倍數(shù);(3)拓展延伸:判斷兩個(gè)連續(xù)的正奇數(shù)的平方差是8的倍數(shù)嗎?并說明理由.鞏固訓(xùn)練1.(2023上·河南商丘·八年級(jí)校聯(lián)考階段練習(xí))計(jì)算:.2.(2023上·甘肅平?jīng)觥ぐ四昙?jí)統(tǒng)考期末)若,,則.3.(2023上·甘肅平?jīng)觥ぐ四昙?jí)統(tǒng)考期末)用簡便方法計(jì)算:(1);(2).4.(2024上·北京大興·八年級(jí)統(tǒng)考期末)求證:當(dāng)是整數(shù)時(shí),兩個(gè)連續(xù)奇數(shù)的平方差是這兩個(gè)奇數(shù)的和的倍.5.(2023上·吉林·八年級(jí)??计谥校倪呴L為a的正方形減掉一個(gè)邊長為b的正方形(如圖1),然后將剩余部分拼成一個(gè)長方形(如圖2).(1)上述過程所揭示的因式分解的等式是______;(2)若,,求的值;(3).6.(2022上·湖南衡陽·八年級(jí)衡陽市外國語學(xué)校??茧A段練習(xí))實(shí)踐與探索:如圖1,在邊長為的大正方形里挖去一個(gè)邊長為的小正方形,再把圖1中的剩余部分(陰影部分)拼成一個(gè)長方形(如圖2所示).(1)上述操作能驗(yàn)證的等式是:______(請(qǐng)選擇正確的一個(gè))A.B.C.(2)請(qǐng)應(yīng)用這個(gè)等式完成下列各題:①已知,則______.②計(jì)算:.題型九求完全平方公式中的字母系數(shù)【例1】(2019上·四川宜賓·八年級(jí)統(tǒng)考期中)若是完全平方式,則m的值等于(

)A.8 B. C.16 D.8或鞏固訓(xùn)練1.(2024上·遼寧大連·八年級(jí)統(tǒng)考期末)如果二次三項(xiàng)式是一個(gè)完全平方式,那么m的值是(

)A.1 B.2 C. D.2.(2023上·遼寧大連·八年級(jí)統(tǒng)考期末)如果關(guān)于m的二次三項(xiàng)式是完全平方式,那么a的值為(

)A.1 B.4 C. D.3.(天津市和平區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題)已知是完全平方式,則.4.(2024下·全國·七年級(jí)假期作業(yè))已知代數(shù)式是一個(gè)完全平方式,則有理數(shù)的值為.5.(2024上·北京豐臺(tái)·八年級(jí)統(tǒng)考期末)如果關(guān)于的多項(xiàng)式是完全平方式,那么的值是.6.(2024下·全國·八年級(jí)假期作業(yè))已知關(guān)于的代數(shù)式是一個(gè)完全平方式,則的值為7.(2021上·遼寧鞍山·八年級(jí)??计谥校┤羰顷P(guān)于的完全平方式,則.8.(2012上·八年級(jí)課時(shí)練習(xí))若多項(xiàng)式是完全平方式,請(qǐng)你寫出所有滿足條件的單項(xiàng)式Q是.題型十完全平方公式與對(duì)稱式【例1】(2024上·天津?yàn)I海新·八年級(jí)??计谀?)已知,,則的值為.(2)已知,,則的值為.(3)已知滿足,則的值為.【例2】(2023上·四川宜賓·八年級(jí)??茧A段練習(xí))(1)已知,求代數(shù)式的值.(2)若,求鞏固訓(xùn)練1.(天津市和平區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題)已知,那么的值為(

)A. B. C. D.2.(2024上·吉林長春·八年級(jí)統(tǒng)考期末)已知,則代數(shù)式的值是(

)A.12 B.16 C.24 D.363.(2023上·四川攀枝花·八年級(jí)??计谥校┮阎?,,求下列各式的值:(1);(2).4.(重慶市合川區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試題)解決下列問題:(1)已知,分別求和的值;(2)若,,求的值.5.(2024上·甘肅定西·八年級(jí)統(tǒng)考期末)閱讀材料:若滿足,求的值.解:設(shè),,則,所以請(qǐng)仿照上例解決下面的問題:(1)問題發(fā)現(xiàn):若x滿足,求:的值.(2)若,求:的值.6.(2023上·湖北孝感·八年級(jí)校聯(lián)考階段練習(xí))已知,.(1)求的值;(2)求的值.7.(2023上·四川宜賓·八年級(jí)四川省宜賓市第二中學(xué)校??计谥校┙鉀Q下面的問題:①,求和的值;②已知,求的值.題型十一完全平方公式在幾何圖形中的應(yīng)用【例1】(2023上·全國·八年級(jí)專題練習(xí))圖①是一個(gè)長為、寬為的長方形,沿圖中虛線用剪刀分成四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.(1)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積.方法1:;方法2:;(2)觀察圖②請(qǐng)你寫出下列三個(gè)代數(shù)式;之間的等量關(guān)系;(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:①已知:,求:的值;②已知:,求:的值.【例2】(2023上·浙江臺(tái)州·八年級(jí)臺(tái)州市書生中學(xué)??计谥校?shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖的三種紙片,種紙片是邊長為的正方形,種紙片是邊長為的正方形,種紙片是長為、寬為的長方形,并用種紙片一張,種紙片一張,種紙片兩張拼成如圖的大正方形.

(1)觀察圖,請(qǐng)你寫出下列三個(gè)代數(shù)式:,,之間的等量關(guān)系;(2)若要拼出一個(gè)面積為的矩形,則需要號(hào)卡片張,號(hào)卡片張,號(hào)卡片______張.(3)根據(jù)題中的等量關(guān)系,解決如下問題:①已知:,,求的值;②已知,求的值.鞏固訓(xùn)練1.(2023下·山東濰坊·七年級(jí)統(tǒng)考期末)圖1是一個(gè)長為,寬為的長方形,沿圖中虛線用剪刀平均裁成四塊小長方形,然后按如圖2所示的形狀拼成一個(gè)大正方形.

(1)圖2中的陰影部分正方形的邊長是(用含a,b的代數(shù)式表示);(2)觀察圖1,圖2,能驗(yàn)證的等式是:(請(qǐng)選擇正確的一個(gè));A.B.C.(3)如圖3,C是線段上的一點(diǎn),以為邊向上分別作正方形和正方形,連接.若,求的面積.2.(2023下·陜西西安·七年級(jí)陜西師大附中??茧A段練習(xí))兩個(gè)邊長分別為a和b的正方形如圖放置(圖①),其未疊合部分(陰影)面積為;若再在圖①中大正方形的右下角擺放一個(gè)邊長為b的小正方形(如圖②),兩個(gè)小正方形疊合部分(陰影)面積為.

(1)用含a、b的代數(shù)式分別表示、;(2)若,,求的值;(3)用a、b的代數(shù)式表示,并當(dāng)時(shí),求出圖③中陰影部分的面積.3.(2023下·遼寧丹東·七年級(jí)統(tǒng)考期中)完全平方公式:適當(dāng)?shù)淖冃?,可以解決很多的數(shù)學(xué)問題.例如:若,,求的值.解:因?yàn)?,所以,即:,又因,所以根?jù)上面的解題思路與方法,解決下列問題:

(1)若,,則的值為______;(2)拓展:若,則______.(3)應(yīng)用:如圖,在長方形中,,,點(diǎn)E、F是、上的點(diǎn),且,分別以、為邊在長方形外側(cè)作正方形和正方形,若長方形的面積為160,求圖中陰影部分的面積和.4.(2023上·山西朔州·八年級(jí)統(tǒng)考期末)圖1是一個(gè)長為、寬為的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)圖2中陰影部分的正方形的周長為;(2)觀察圖2,請(qǐng)寫出下列三個(gè)代數(shù)式,,之間的等量關(guān)系;(3)運(yùn)用你所得到的公式,計(jì)算:若為實(shí)數(shù),且,,試求的值.5.(2023下·廣東韶關(guān)·七年級(jí)??计谥校┰趯W(xué)習(xí)“整式的乘除”這一章時(shí),我們經(jīng)常構(gòu)造幾何圖形來對(duì)代數(shù)式的變形加以說明,借助直觀,形象的幾何模型加深對(duì)乘法公式的認(rèn)識(shí)和理解.閱讀下列材料:材料1:如圖1,現(xiàn)有甲,乙,丙三種型號(hào)的卡片若干張,其中甲型號(hào)卡片是邊長為的正方形,乙型號(hào)卡片邊長為的正方形,丙型號(hào)卡片是長為寬為的長方形.

材料2:用張甲,張乙和張丙型號(hào)的卡片,拼成正方形,可以驗(yàn)證:,驗(yàn)證如下:從整體看是一個(gè)邊長為的正方形,所以.從正方形的分割情況看,它的面積是由張甲,張乙和張丙卡片的面積之和,所以,比較兩種不同的計(jì)算方法,可得.根據(jù)以上材料,解答以下問題(1)用圖中的卡片,拼成圖所示長方形,可以驗(yàn)證的等式為:;

(2)用張丙型號(hào)的卡片拼成圖所示正方形框,中間的陰影部分是邊長為的正方形,現(xiàn)用兩種不同的方法計(jì)算陰影部分的面積,可以驗(yàn)證的等式為:;(3)已知圖中的紙片(足夠多),利用種卡片設(shè)計(jì)一個(gè)幾何圖形來計(jì)算畫出圖形,寫出驗(yàn)過程.題型十二利用配方法求最值、解方程【例1】(2023下·湖南郴州·七年級(jí)校考期中)閱讀下列材料:,我們把形如“”或“”的多項(xiàng)式叫做完全平方式,因?yàn)槭且粋€(gè)數(shù)的平方,具有非負(fù)性,我們常利用這一性質(zhì)解決問題,這種解決問題的思路方法叫做配方法.例如.可知當(dāng),即時(shí),有最小值,最小值是2,根據(jù)閱讀材料,用配方法解決下列問題:(1)有最小值______.(2)當(dāng)a,b為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.(3)已知a,b,c為的三邊,且滿足,試判斷此三角形的形狀.【例2】(2019·吉林長春·八年級(jí)校聯(lián)考期末)閱讀下列解題過程,再解答后面的題目.例題:已知,求的值.解:由已知得即∵,∴有,解得∴.題目:已知,求的值.鞏固訓(xùn)練1.(2023上·湖南長沙·八年級(jí)校聯(lián)考期中)我們定義:如果兩個(gè)多項(xiàng)式與的和為常數(shù),則稱與互為“對(duì)消多項(xiàng)式”,這個(gè)常數(shù)稱為它們的“對(duì)消值”.如與互為“對(duì)消多項(xiàng)式”,它們的“對(duì)消值”為.(1)下列各組多項(xiàng)式互為“對(duì)消多項(xiàng)式”的是(填序號(hào));與;與;與(2)多項(xiàng)式與多項(xiàng)式(,為常數(shù))互為“對(duì)消多項(xiàng)式”,求它們的“對(duì)消值”;(3)關(guān)于的多項(xiàng)式與互為“對(duì)消多項(xiàng)式”,“對(duì)消值”為.若,,求代數(shù)式的最小值.2.(2023上·湖北荊州·九年級(jí)校聯(lián)考階段練習(xí))閱讀下列材料:利用完全平方公式,將多項(xiàng)式變形為的形式,然后由就可求出多項(xiàng)式的最小值.

例:求多項(xiàng)式的最小值.解:.因?yàn)樗援?dāng)時(shí),,因此有最小值,最小值為1,即的最小值為1.通過閱讀,理解材料的解題思路,請(qǐng)解決以下問題:(1)【理解探究】已知代數(shù)式,求A的最小值;(2)【類比應(yīng)用】張大爺家有甲、乙兩塊長方形菜地,已知甲菜地的兩邊長分別是米、米,乙菜地的兩邊長分別是米、米,試比較這兩塊菜地的面積和的大小,并說明理由;(3)【拓展升華】如圖,中,,cm,cm,點(diǎn)M,N分別是線段AC和BC上的動(dòng)點(diǎn),點(diǎn)M從A點(diǎn)出發(fā)以的速度向C點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)N從C點(diǎn)出發(fā)以的速度向B點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t,則當(dāng)t的值為多少時(shí),的面積最大,最大值為多少?3.(2023下·廣東佛山·七年級(jí)統(tǒng)考階段練習(xí))【閱讀材料】配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法.這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來解決一些問題.我們定義:一個(gè)整數(shù)能表示成(、是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”.例如,是“完美數(shù)”.理由:因?yàn)?,所以是“完美?shù)”.【解決問題】(1)數(shù)61“完美數(shù)”(填“是”或“不是”);【探究問題】(2)已知,則;(3)已知(、是整數(shù),是常數(shù)),要使為“完美數(shù)”,試求出符合條件的值;【拓展結(jié)論】(4)已知、滿足,求的最小值.4.(2022上·四川巴中·八年級(jí)統(tǒng)考期中)圖1是一個(gè)長為,寬為的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)圖2中的陰影部分的正方形的邊長等于.(2)觀察圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系.(3)運(yùn)用你所得到的公式,計(jì)算若,求:①的值.②的值.(4)用完全平方公式和非負(fù)數(shù)的性質(zhì)求代數(shù)式的最小值.5.(2023下·遼寧沈陽·七年級(jí)沈陽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論