2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題含解析_第1頁
2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題含解析_第2頁
2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題含解析_第3頁
2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題含解析_第4頁
2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京市西城區(qū)北京師大附屬實驗中學數(shù)學高三上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.2.已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變3.已知函數(shù),則()A.2 B.3 C.4 D.54.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.5.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓6.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.47.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.8.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.59.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.10.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種11.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)12.已知復數(shù)(為虛數(shù)單位)在復平面內(nèi)對應的點的坐標是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調(diào)增區(qū)間為__________.14.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.15.已知(為虛數(shù)單位),則復數(shù)________.16.某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.①2至3月份的收入的變化率與11至12月份的收入的變化率相同;②支出最高值與支出最低值的比是6:1;③第三季度平均收入為50萬元;④利潤最高的月份是2月份.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.18.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.20.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.21.(12分)已知,,分別為內(nèi)角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)22.(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學生綜合分析,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.2、D【解析】

由函數(shù)的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題3、A【解析】

根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.4、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質(zhì),難度一般.5、B【解析】

根據(jù)線段垂直平分線的性質(zhì),結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學運算能力和推理論證能力,考查了分類討論思想.6、C【解析】

由二項式系數(shù)性質(zhì),的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關鍵.7、C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.8、C【解析】

利用復數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數(shù)代數(shù)形式的乘法運算,是基礎題.9、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.10、B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.11、D【解析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎題.12、A【解析】

直接利用復數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內(nèi)對應的點的坐標是.故選:A.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.14、【解析】

設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關鍵;屬于中檔題、常考題型.15、【解析】

解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.16、①②③【解析】

通過圖片信息直接觀察,計算,找出答案即可.【詳解】對于①,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確.對于②,支出最高值是2月份60萬元,支出最低值是5月份的10萬元,故支出最高值與支出最低值的比是6:1,正確.對于③,第三季度的7,8,9月每個月的收入分別為40萬元,50萬元,60萬元,故第三季度的平均收入為50萬元,正確.對于④,利潤最高的月份是3月份和10月份都是30萬元,高于2月份的利潤是80﹣60=20萬元,錯誤.故答案為①②③.【點睛】本題考查利用圖象信息,分析歸納得出正確結論,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數(shù)列的前項和公式可求解.【詳解】(1)∵是等比數(shù)列,且成等差數(shù)列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數(shù)列的通項公式,考查并項求和法及等差數(shù)列的項和公式.本題求數(shù)列通項公式所用方法為基本量法,求和是用并項求和法.數(shù)列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.18、(1)an=2n【解析】

(1)先設出數(shù)列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題型.19、(1);(2)1.【解析】

(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.20、(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應概率的對稱性.21、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論