版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10945
IdentifyingGrowthAccelerations
BramGootjes
JakobdeHaan
KerstenStamm
ShuYu
WORLDBANKGROUP
DevelopmentEconomicsProspectsGroup
October2024
PolicyResearchWorkingPaper10945
Abstract
Thispaperintroducesanewmethodtoidentifyoutput growthaccelerationsthatintegrateselementsofboththe“criteria-based”and“break-testing”approaches,whichare prevalentintheliterature.Theproposedcriteriadonot imposeafixedlengthongrowthaccelerations,thusenabling durationanalyseswithoutrelyingonquestionablestatistical techniquesfortheidentificationoftheseaccelerations.The
findingsshowthatgrowthaccelerationslastanaverage13.4years,albeitwithsignificantvariationsindurationacrossregions.Initialconditionsandcontemporaneousdomesticandexternaleconomicconditionsallmatterforthecontin-uationofanacceleration,andchangesinanysinglepolicyconditionhavelessofanimpact.
ThispaperisaproductoftheProspectsGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybe
contactedatbgootjes@;jakob.de.haan@rug.nl;kstamm@;andsyu2@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
IdentifyingGrowthAccelerations
BramGootjes,JakobdeHaan,KerstenStamm,andShuY
u*
Keywords:outputgrowthaccelerations;identification;outputgrowthvolatility
JELcodes:O11;O47;O57
Declarationofinterests:none.
*BramGootjes:WorldBank,ProspectsGroup,bgootjes@;JakobdeHaan:UniversityofGroningenandCESifo,jakob.de.haan@rug.nl;KerstenStamm:WorldBank,ProspectsGroup,kstamm@;ShuYu:WorldBank,EFIChiefEconomistOffice,syu2@.Theviewsexpressedherearetheauthors’,anddonotreflecttheofficialviewsoftheWorldBank,itsExecutiveDirectors,orthecountriestheyrepresent.WearethankfultoRafaelaMartinhoHenriquesforherexceptionalresearchassistance,andtoAntonioFatás,AyhanKose,JohnBaffes,andallparticipantsoftheWorldBank’sProspectGroupseminarsfortheirvaluablecommentsandsuggestions.
1.Introduction
Promotingsustainedeconomicgrowthisprobablythemostimportantgoalofeconomicpolicy.However,studyinggrowthisacomplexandoftencontentiousissue,wherescholarshaveusedvariouseconometrictechniquestouncoverhowcountriesachieveandmaintainrobustgrowth.Traditionally,scholarshaveanalyzedlong-termoutputtrendstounderstandthefactorsbehinddifferinggrowthpatternsacrosscountries(see,forexample,BarroandSala-i-Martin,1991;Mankiwetal.,1992)
.1
Focusingonlong-termgrowthaverages,however,assumesastablelinearrelationshipbetweengrowthanditsfundamentalssuitableforallcountriesinalleconomicconditions.Thisassumptionfaltersgiventherarityofcountriesmaintainingconstantgrowthratesoverlongperiods(Easterlyetal.,1993;Ben-DavidandPapel,1998;Ayaretal.,2018).Instead,growthpatternsaretypicallyvolatile,withcountriesexperiencingphasesofprogress,stagnation,andsetbacks(Pritchett,2000).
Recognizingtheinadequacyoftraditionallong-termtrendanalysisowingtothevolatilenatureofgrowthrates,researchershaveshiftedtowardsinvestigatingspecificepisodesofrapidandsustainedgrowth,alsoknownasgrowthaccelerationsorgrowthspells(Hausmannetal.,2005;TimmeranddeVries,2009).Thesignificanceofstudyinggrowthaccelerationscanbemotivatedfromvariouseconomicperspectives.Forinstance,countriesmightundergoarapidupsurgeinoutputgrowthonlytoreverttotheirpriorgrowthtrajectories,oftenduetotransientshocksthattemporarilybolstergrowthperformance(asperneoclassicalgrowththeory).Conversely,somecountriesmaytransitiontowardsapermanentlyhighergrowthpath,drivenbyenhancedeconomicpolicies,forexample(asviewedfromanendogenousgrowthmodelperspective).Regardlessofthetheoreticalframeworkused,episodesofacceleratedgrowthreflectthemostinterestingvariationingrowthdata,whichwouldbeobscuredwhenconsideringlong-termaverages.Bylinkingthetimingoftheseepisodestodrivingforces,scholarscangaindeeperinsightsintothecausalmechanismsbehindvariationsingrowthperformance.
Hausmannetal.(2005)laidthegroundworkfortheempiricalexaminationofgrowthaccelerations.Toidentifysuchaccelerations,theyproposeasetofeconomiccriteriathatfilteroutyearscharacterizedbybothahighlevelofgrowthandasignificantsurgeofgrowth.Forinstance,averagegrowthisrequiredtoexceed3.5percentperannumoveraperiodofeightyearsandtosurpassthegrowthrateoftheprecedingeightyearsbyatleasttwopercentagepoints.These
1Onestrandofliterature,followingseminalstudiesbyBarroandSala-i-Martin(1991)andMankiwetal.(1992),examinedthedeterminantsofcross-countrydifferencesinaveragelong-termeconomicgrowthrates.Anotherstrand,pioneeredbyIslam(1995)andCasellietal.(1996),useddynamicpanelsinstead,arrangingcountry-leveldataintofive-yearaveragesorotherintervals.
criteriahavegarneredwidespreadadoptioninempiricalstudiesasausefulbenchmarkforidentifyinggrowthaccelerations(cf.,ImamandSalinas,2008;TimmeranddeVries,2009;Eichengreenetal.,2012;Diaoetal.,2019;Grussetal.,2020;Avometal.,2021;KoopmanandWacker,2023).Althoughtheresultsinthisliteraturehavebeenmixed,acommonfindingisthataccelerationsarepredominantlyexplainedbystrongerinstitutionsandidiosyncraticfactors.
Toexpeditethecatching-upprocesstomoreadvancedeconomies,developingcountriesrequirenotonlyrobusteconomicgrowth,butalsosustainedgrowthoveranextendedperiod.Addressingthisissue,Bergetal.(2012)investigatethefactorsthatsustaingrowthaccelerationsbyusingstructuralbreaktestinginoutputgrowthseriestoidentifythestartofgrowthaccelerations(followingBaiandPerron,1998,2003)alongsideadhoccriteriatoidentify‘desirable’spells.Theirresultsindicatethatwhileregionsdonotdiffersignificantlyinthefrequencyofgrowthaccelerations,theseepisodestendtobeshorterinAfricanandLatinAmericancountriescomparedtothelongerdurationsobservedinindustrializedcountriesandemergingAsia.
ThefindingsofBergetal.(2012)questiononeoftheimplicitassumptionsinthecriteriaintroducedbyHausmannetal.(2005):thatgrowthaccelerationshaveafixeddurationofeightyears.Additionally,theuseofstructuralbreaktestingtoidentifytheonsetofgrowthaccelerationssuggeststhatcountry-specificgrowthcharacteristicsshouldbeconsideredratherthanapplyinga‘one-size-fits-all’approach.Despitetheseinsights,themethodproposedbyBergetal.(2012)foridentifyinggrowthaccelerationshasnotgainedasmuchtractionasthecanonicalfilterofHausmannetal.(2005).OnepossiblereasonisthelowpoweroftheBai–Perrontest,whichmayleadtotherejectionoftruebreaksintheunderlyingGDPpercapitaseries(Karetal.,2013).
However,thisalsoholdsfortheapproachofHausmannetal.(2005).Forinstance,astheircriteriaarebasedonperiodicaverages,thefilterrisksidentifyingperiodswithsporadichighgrowthinterspersedwithlowornegativegrowth,contradictingtheaimofidentifyingperiodswithsustainedhighoutputgrowth.Thisissuebecomesmorepronouncedwhenepisodesstartamidstnegativegrowthyears(Jong-A-PinanddeHaan,2011)
.2
Moreover,theuseofadhoccriteriamayleadtoerrorsinassessinggrowthperformanceduetovariationsinoutputgrowthvolatility,potentiallyresultinginunder-identificationofgrowthaccelerationsinlessvolatileeconomiesandover-identificationinmorevolatileones
.3
2Jong-A-PinanddeHaan(2011)showedthattheapproachofHausmannetal.(2005)occasionallyproduceslessplausiblestartingyearsofoutputaccelerationswherethegrowthrateisnegativeorlimited.Todealwiththis,theyintroduceanadditionalcriterion,requiringthateconomicgrowthinthefirstyearofthegrowthaccelerationmustbehigherthanintheprecedingyear.
3Theliteratureonidentifyingfiscaladjustments,aspioneeredbyAlesinaandPerotti(1995),suffersfromthesameproblemaspointedoutbyWieseetal.(2018).A‘one-size-fits-all’approachislikelytoidentifymorefiscaladjustments
Toexaminetheissueswiththeuseofuniformeconomiccriteriatoidentifygrowthaccelerationsinmoredetail,
Figure1
showsrealGDPpercapitaforIndiaandZimbabwesincethe1950s.Indiaisoneoftheworld’sfastest-growingeconomiesinrecentdecades.Instarkcontrast,Zimbabwe’seconomyhasbeenfraughtwithchallenges,includinghyperinflation,currencycrises,debtdistress,andpoliticalturmoil.By2023,India’srealGDPpercapitawasovertwoandahalftimesthatofZimbabwe($7,379versus$2,811),eventhoughbothcountrieshadcomparablepercapitaincomesintheearly1990s.Clearly,India’sgrowthexperiencehassignificantlyoutperformedthatofZimbabweovertheperiodunderconsideration.
Tounderstandeconomicgrowth,itiscrucialtoexplorewhatfactorssignificantlycontributedtoIndia’ssuccesscomparedtowhathinderedZimbabwe’sprogress.However,thecriteriacommonlyusedintheliteraturetoidentifygrowthaccelerationsfallshortinthiscontext.DespiteIndia’simpressivegrowthperformancesincetheearly1990s,thefilterproposedbyHausmannetal.(2005).Incontrast,thefilteridentifiestwogrowthaccelerationsforZimbabwe,startingin1968and2008.AlthoughtheseperiodssawsharpincreasesinGDPpercapita,thesesurgesturnedouttobeshort-livedandwereprecededbysignificanteconomicdownturns.Asaresult,realGDPpercapitadidnotshowsubstantialincreasesrelativetoearlierperiods.Moreso,thesefindingsreflecttheeconomicvolatilityexperiencedbyZimbabweratherthangenuinegrowthacceleration.
Bothmethodsforidentifyinggrowthaccelerations(filtersandbreakpoints)haveclearbenefitsbutalsolimitations.Toovercometheseissues,weintroduceanovelfilteringmethodthatbuildsuponpreviousconcepts.Ourapproachcombineselementsofthe‘criteria-based’approachseeninHausmannetal.(2005)butleveragescountry-specificgrowthcharacteristics,akintotheunderlyingprincipleofthe‘break-testing’approachoutlinedbyBergetal.(2012).Specifically,weproposeafilterbasedontheweightedaverageofthelong-termtrendandvolatilityofacountry’soutputgrowth,capturinguniquegrowthpatternstoidentifygrowthaccelerations.Furthermore,ourcriteriadonotimposeafixedlengthoftheacceleration,allowingforanalysesofthedurationofgrowthaccelerations.Byintegratingtheseelementsintoastraightforwardfilter,wesidesteptheneedforcomplexandpotentiallyunreliablestatisticaltechniquestoidentifygrowthaccelerations.
Basedonasampleof181countriesbetween1951and2023,weidentified134growthaccelerationsacross110countries.Duringtheseperiods,realGDPpercapitagrowthaverages5.9percentperannum,morethansixtimeshigherthaninotheryears.Theaveragedurationof
forcountrieswithvolatilebudgetoutcomes,simplybecausethechangeofthebudgetbalanceisthekeycriteriontoidentifyafiscaladjustment.Thisisaso-calledtypeIerror.Bythesametoken,thesefiltersarelesslikelytodetectsignificantchangesinfiscalpolicyincountrieswherethebudgetaryprocessleadstolessvolatilepolicyoutcomes.Inthatcase,thesefilterssufferfromtypeIIerrors.
growthaccelerationsis13.4years,significantlylongerthanthecommonlyassumedeight-yeardurationintheliterature.Moreover,thedurationofgrowthaccelerationsvariessignificantlyacrossregionsandcountrygroups,consistentwiththefindingsofBergetal.(2012).
Arangeofstatisticsdemonstratesthebenefitsofourmethodtoidentifygrowthaccelerations.Forinstance,theepisodesarecharacterizedbyasignificantupswinginmedianrealGDPpercapitagrowthatthebeginningoftheidentifiedgrowthaccelerationsandacleardipattheend.Thispatternisnotclearinthegrowthaccelerationsidentifiedusingothermethods.Throughaseriesofcountrycasestudies,wefindthatthemethodweproposealignscloselywithanecdotalevidenceinaccelerationpatterns.Forinstance,inthecaseofIndia,weidentifyaprolongedaccelerationfrom2003to2019.Weshowthatthemethodisrobusttotheuseofalternativeweights,variousminimum-lengthrequirements,rollingwindows,andreducedsamplingtocalculatethethresholds.
Tofurtherillustratetheadvantagesofourproposedmethod,weconductaseriesofsurvivalanalysestostudythefactorsthatarerelatedtosustaininggrowthaccelerations.Weshowthatinitialconditions,aswellasdomesticandexternaleconomicconditions,playasignificantroleinthepersistenceofanacceleration.Ontheotherhand,changesinpolicyconditionshavelessimpact.Thesefindingssuggestthatmaintainingastablemacroeconomicenvironmenthelpstoprolonggrowthaccelerations.Theseresultsarerobusttoemployingalternativepolicymeasures,includingfrailty,andusingalternativesamples.
Therestofthepaperisorganizedasfollows.Section2providesdetailsontheproposednewfilterandpresentstheoutcomes.Sections3and4comparetheoutcomesofthenewfilterwiththoseofpreviousstudies,examineitsrobustnesstoalternativeparameters,anddiscussfeaturesoftheidentifiedgrowthaccelerations.Section5presentsseveralcountrycasestudiestodemonstratetheadvantagesofusingthenewidentificationapproach.Section6analyzeswhichfactorssustainagrowthacceleration.Section7concludes.
2.Identifyinggrowthaccelerations
2.1Thenewmethod
Weproposeidentifyinggrowthaccelerationsbuildinguponpreviousfilters.Ourmethodisdesignedtopinpointperiodsofsustainedgrowth,effectivelymitigatingtheinfluenceofsuddenspikesinrealGDPpercapitagrowthratesbyincorporatingmeasuresofvolatility.
Thefilteringtechniquestartswithcalculatingcountry-specificmetrics(denotedasθiforcountryi)basedonthemean(μ)andstandarddeviation(σ)ofacountry’srealGDPpercapitagrowthoverthefullsampleperiod
.4
Aswillbeexplainedbelow,thismetricisusedtoimposerequirementsonrealper-capitaoutputgrowthtoidentifyaccelerationepisodes.Themean(l)controlsforlong-termtrendsinrealGDPpercapitagrowth,whilethestandarddeviation(σGDPPCi)capturesitsvolatility:
θi(μ,σ)=θ(l)+(1?θ)(σGDPPCi)(1)
where0≤θ≤1.Fornow,weassignequalweights(θ=0.5)tothelong-runtrendandvolatilityofrealGDPpercapitagrowth(referredtoasthe“baseline”inthefollowingsections)
.5
Tocalculatethemeanandstandarddeviationofpercapitaoutputgrowth,weexcludetheminimumandmaximumobservationsforeachcountrytopreventthesemeasuresfrombeingskewedbyoutliers.
Figure2
presentstheaveragecountry-specificmetricsacrossregions.Weobservethatthemeasuresdifferconsiderablybothacrossandwithinregions.Inemergingmarketsanddevelopingeconomies(EMDEs)acrossLatinAmericaandtheCaribbean(LAC),Sub-SaharanAfrica(SSA),theMiddleEastandNorthAfrica(MNA),andEuropeandCentralAsia(ECA),metricsareprimarilydeterminedbythestandarddeviationofgrowth,reflectingthehighereconomicvolatilityprevalentintheseregions.Inadvancedeconomies(AEs),aswellasintheSouthAsiaregion(SAR)andEastAsiaandthePacific(EAP),metricsaremorestronglydrivenbylong-termaveragegrowthrates,capturingtheirgenerallystrongereconomicperformance.Overall,lowermetricsaregenerallyobservedinLAC,wheretheaveragemeasurestandsat2.9,whilehighermeasuresarefoundinECA,averaging4.3.
4FollowingHausmannetal.(2005),realGDPpercapitagrowthisusedtoavoidtheresultsbeingdrivenbypopulationgrowth.
5InSection4,wedemonstratehowadjustingtheseweightsimpactsthenumberofgrowthaccelerationsthatareidentified.
Afterhavingcalculatedthemetricforeachcountry,weidentifyaccelerationepisodesusingthefollowingcriteria:
?Startandendyears.AnepisodestartswhenrealGDPpercapitagrowthexceedsthecountry-specificmetricandendswhenitfallsbelowthismetric.
?Duration.TheidentifiedaccelerationmustencompassatleasteightyearsofrealGDPpercapitagrowthabovetheestablishedmetric
.6
?Adjustingfortemporarydips.ShouldrealGDPpercapitagrowthfallbelowthecountry-specificmetric,theepisodeisstillconsideredongoingifaveragegrowthduringtheperiodsbeforeandafterthedip,alongwiththeyearwhenittemporarilyfallsbelowthisthreshold,staysabovethecountry-specificmetric.
?Excludingcyclicalrebounds.EpisodesareexcludedifthelevelofrealGDPpercapitaattheendoftheepisodeislowerthaninanyyearbeforethestartoftheepisode.
Thesecriteriaarenecessarytoensurethattheidentifiedepisodesaresustainedandthattheycaptureacceleratedrealpercapitaoutputgrowth.Whilethefirstcriterionallowstheepisodelengthtovary,thesecondonemakessurethattheidentifiedepisodesaresustainedandlessinfluencedbycyclicalmovements.ThethirdcriterioniscrucialtoavoidtheprematureendingofagrowthaccelerationwhenrealGDPpercapitagrowthtemporarilydipswhilethetrendisstillstrong.Forexample,innearlyhalfofthecaseswithatemporarydip,realGDPpercapitagrowthdoesnotdeviatemorethan25percentfromthecalculatedthresholdintheyearitfallsbelowthethreshold
.7
Finally,thelastcriterionisneededtominimizetheinclusionofpurecyclicalrebounds(ChristianoandFitzgerald,2003;BarroandSala-i-Martin,1992).
2.2Theoutcomes
WeexaminerealGDPpercapitagrowthacrossanunbalancedpanelof181countriesfrom1951to2023toidentifyinstancesofgrowthaccelerations.WeusedataonrealGDPpercapita(in2017USD)providedbythePennWorldTable(PWT)10.1databaseandupdateitto2023using
6Aperiodofeightyearsiscommonlyusedinthegrowthaccelerationliterature.However,whereaspreviousstudiesapplythisnumberasthemaximum,weconsideritasaminimumrequirement.InSection4,wedemonstratethatalteringthisminimum-yearrequirementonlyimpactsthenumberofidentifiedaccelerations.
7Inaquarterofthecases,realGDPpercapitagrowthisnegativewhenitdipsbelowthethreshold.Onemayarguethatthiscriterionispickingupeconomicrecoveryinsteadofacontinuedaccelerationinthesecases.However,
conceptually,thisisveryunlikely.Whilerecoveryisprobable,forthesubsequentperiodtoqualifyaspartofa
growthacceleration,averagegrowthduringthisperiod—includingthedipyear—mustexceedthecalculated
benchmarksplustherecovery.Inotherwords,thepost-crisisgrowthmustbesubstantialenoughtoensurethatweareobservinggenuinecontinuationoftheaccelerationratherthanmerelyarecovery.
theIMFWorldEconomicOutlook(WEO)Dataset.Toqualifyasagrowthacceleration,werequireaminimumdurationofeightyears,making2016thelatestpossibleyearforwhichwecanidentifytheinitiationofagrowthacceleration.
Column(1)of
Table1
showsthedescriptivestatisticsofthegrowthaccelerationepisodesweidentifybasedonthecountry-specificthresholdsdeterminedinthebaselinescenario
.8
Overthesampleperiod,wefind134accelerationepisodesacross110countries.Duringtheaccelerations,realGDPpercapitagrowthaveragesanimpressive5.9percentperyear,morethansixtimeshigherthanaveragegrowthinotheryears.Mostofthegrowthduringtheaccelerationepisodesisnotprimarilyattributabletothebeginningorendoftheseepisodes,asevidencedbythecomparablerealGDPpercapitagrowthratesobservedinthefirstandlastyearofthesegrowthaccelerations.Intotal,growthaccelerationsareobservedin18.1percentofthecountry-yearobservations.ThisisinlinewiththeoutcomesofHausmannetal.(2005),conveyingthatexperiencingagrowthaccelerationisnotuncommon,anditisnotlimitedtojustafewfortunatecountries.Infact,somecountriesevenexperiencedmorethanoneaccelerationwithinthetimeframeconsidered.
Auniquefeatureofourproposedfilteristhatitdoesnotimposeafixeddurationforgrowthaccelerations.Asshownin
Table2,
theaveragedurationofgrowthaccelerationsis13.4years,whichissignificantlylongerthantheeight-yeardurationcommonlyassumedintheliterature.Outofthe134accelerationsweidentified,98lastedtenyearsorlonger.Aconsiderablenumberevenspannedfifteenyearsormore,suchasthoseintheRepublicofKoreaandTaiwanbetweenthe1960sandthe1990s,inseveralWesternEuropeancountriesandJapanbetweenthe1950sandthe1970s,andmorerecentlyinBangladeshandVietNam.
Weidentified39growthaccelerationsinAEsand95inEMDEs.However,whenconsideringthenumberofcountriesforwhichwehavedata,AEssignificantlyoutperformEMDEsintermsofexperiencinggrowthaccelerations.Furthermore,growthaccelerationsinAEstypicallylastedlonger,averaging14.7years,comparedto12.8yearsinEMDEs.
Relativelyspeaking,moregrowthaccelerationsoccurredinECA,LAC,andSAR,whilefewerwereobservedinMNAandSSA.InEAPandSAR,growthaccelerationslastedsignificantlylongercomparedtootherEMDEregions.Thesefindingsareconsistentwiththeresultsobtainedwhenwedividethesampleintostableandvolatileeconomies,withmoreandlongergrowthaccelerationsexperiencedbystableeconomiescomparedtovolatileones.Theresultsforcommodityexporters,
8
TableA1
intheAppendixprovidesalistofalltheidentifiedgrowthaccelerations.
smallstates,andfragileandconflict-affectedsituations—groupsofcountriestypicallycharacterizedbygreatereconomicvolatility—furthersupporttheseconclusions
.9
Insum,theresultspresentedin
Table2
challengetwoassumptionsoftenusedintheliterature:theimpositionofafixeddurationforgrowthaccelerationsandtheuseofadhocstandardstoidentifygrowthaccelerationsacrosscountrieswithdiverseeconomiccharacteristics.Inthefollowingsection,weexaminetheimplicationsofthesefindingsfortheaccurateidentificationofgrowthaccelerations.WecomparetheoutcomesofourapproachwiththosederivedfromthefiltersusedbyHausmannetal.(2005)andJong-A-PinanddeHaan(2011).
3.Comparisonwithotherfilters
3.1Growthduringandaroundtheaccelerationepisodes
Column(2)of
Table1
presentsthegrowthaccelerationsidentifiedusingthefilteringmethodsuggestedbyHausmannetal.(2005),whilecolumn(3)showstheresultswhentheadditionalcriterionproposedbyJong-A-PinanddeHaan(2011)isapplied.TheepisodesidentifiedwithourproposedfilterexhibitmodestlyhigheraveragerealGDPpercapitagrowthratesandlowervolatilityduringaccelerationscomparedtothoseidentifiedwiththeotherapproaches.Thissuggeststhatthemethodweproposeislesspronetoidentifyingaccelerationsdrivenbyshort-termgrowthspikes.
Table1
alsohighlightsmoregeneraldifferencesbetweenthegrowthaccelerationsidentifiedbythedifferentfilters.Forinstance,ourproposedmethodyieldsasmallernumberofgrowthaccelerationsthantheotherapproaches.However,sincemostoftheepisodesidentifiedwithourfilterlastedlongerthaneightyears,ahighershareofobservationsareclassifiedasaccelerationsusingourmethod.Additionally,
Table1
showsthataveragerealGDPpercapitagrowthratesintheepisodesidentifiedwithourproposedfilterareconsiderablyhigherinthefirstyearcomparedtotheothermethods.Moreover,growthinthefinalyearoftheaccelerationismarginallybelowaveragegrowthobservedduringtheepisodes,whereasfortheotherfilters,thelastyearoftheidentifiedepisodesisalmostonepercentagepointabovetheaverage.Overall,thissuggeststhatourapproachmaybemoreeffectiveinidentifyingthestartandendofanaccelerationepisode.
Figure3
furthersupportsthisclaim.WhiletheepisodesidentifiedbyourfilterarecharacterizedbyasignificantupswinginmedianrealGDPpercapitagrowthatthebeginning(i.e.,yeart)andasignificantdipattheend(i.e.,yearT)ofgrowthaccelerationsidentified,thispatternisnot
9Wealsoinvestigatedwhetherthedurationsofgrowthaccelerationsvariedacrossdifferentdecades.However,nocleartrendemergedfromtheanalysis.Section3.2providesamoredetailedexaminationofgrowthaccelerationtrends.
clearlyobservedusingtheothermethods
.10
Notably,growthoftenrisesmoderatelyinthefirstyearoftheidentifiedaccelerationswhenusingtheothermethods,particularlyinthecaseoftheHausmannetal.(2005)criteria.Moreover,med
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 美團(tuán)居間合同范本
- 包頭市2024內(nèi)蒙古包頭“事業(yè)編制企業(yè)用”引才58人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 貿(mào)易政策研究專(zhuān)家面試問(wèn)題集
- 應(yīng)用支持工程師崗位考試題含答案
- 媒體公司創(chuàng)意總監(jiān)面試題集
- 商務(wù)拓展面試題及客戶開(kāi)發(fā)含答案
- 合規(guī)管理方案模板及答案
- 2025年人工智能大數(shù)據(jù)分析平臺(tái)建設(shè)項(xiàng)目可行性研究報(bào)告
- 新能源汽車(chē)的戰(zhàn)略路徑
- 2026屆云南省祿勸彝族苗族自治縣一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析
- T-CNHC 4-2025 昌寧縣低質(zhì)低效茶園改造技術(shù)規(guī)程
- 雨課堂學(xué)堂在線學(xué)堂云《芊禮-謙循-送給十八歲女大學(xué)生的成人之禮(中華女子學(xué)院 )》單元測(cè)試考核答案
- 2025年手術(shù)室護(hù)理實(shí)踐指南試題(含答案)
- 智慧農(nóng)貿(mào)市場(chǎng)建設(shè)項(xiàng)目報(bào)告與背景分析
- 護(hù)理部競(jìng)選副主任
- 【10篇】新版部編六年級(jí)上冊(cè)語(yǔ)文課內(nèi)外閱讀理解專(zhuān)項(xiàng)練習(xí)題及答案
- 2026年中國(guó)經(jīng)濟(jì)展望:風(fēng)鵬正舉
- 老年健康服務(wù)中的多學(xué)科團(tuán)隊(duì)協(xié)作
- 上市公司部門(mén)組織架構(gòu)及崗位職責(zé)大全
- 公司紡粘針刺非織造布制作工合規(guī)化技術(shù)規(guī)程
- 雨課堂學(xué)堂云在線《人工智能原理》單元測(cè)試考核答案
評(píng)論
0/150
提交評(píng)論