版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第07講利用導(dǎo)數(shù)研究雙變量問題(精講+精練)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析高頻考點(diǎn)一:分離雙參,構(gòu)造函數(shù)高頻考點(diǎn)二:糅合雙參(比值糅合)高頻考點(diǎn)三:糅合雙參(差值糅合)高頻考點(diǎn)四:變更主元法高頻考點(diǎn)五:指定主元法高頻考點(diǎn)六:利用根與系數(shù)的關(guān)系轉(zhuǎn)單變量高頻考點(diǎn)七:利用對(duì)數(shù)平均不等式解決雙變量問題第四部分:高考真題感悟第五部分:第07講利用導(dǎo)數(shù)研究雙變量問題(精練)第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、導(dǎo)數(shù)中求解雙變量問題的一般步驟:(1)先根據(jù)已知條件確定出變量SKIPIF1<0滿足的條件;(2)將待求的問題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)問題,同時(shí)注意將雙變量轉(zhuǎn)化為單變量,具體有兩種可行的方法:①通過(guò)將所有涉及SKIPIF1<0的式子轉(zhuǎn)化為關(guān)于SKIPIF1<0的式子,將問題轉(zhuǎn)化為關(guān)于自變量SKIPIF1<0(SKIPIF1<0亦可)的函數(shù)問題;②通過(guò)SKIPIF1<0的乘積關(guān)系,用SKIPIF1<0表示SKIPIF1<0(用SKIPIF1<0表示SKIPIF1<0亦可),將雙變量問題替換為SKIPIF1<0(或SKIPIF1<0)的單變量問題;(3)構(gòu)造關(guān)于SKIPIF1<0或SKIPIF1<0的新函數(shù),同時(shí)根據(jù)已知條件確定出SKIPIF1<0或SKIPIF1<0的范圍即為新函數(shù)定義域,借助新函數(shù)的單調(diào)性和值域完成問題的分析求解.2、破解雙參數(shù)不等式的方法:一是轉(zhuǎn)化,即由已知條件入手,尋找雙參數(shù)滿足的關(guān)系式,并把含雙參數(shù)的不等式轉(zhuǎn)化為含單參數(shù)的不等式;二是巧構(gòu)函數(shù),再借用導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,從而求其最值;三是回歸雙參的不等式的證明,把所求的最值應(yīng)用到雙參不等式,即可證得結(jié)果第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·重慶市第七中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且對(duì)SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:設(shè)SKIPIF1<0,因?yàn)閷?duì)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)都有SKIPIF1<0恒成立,等價(jià)于SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:A.2.(2022·陜西·西安工業(yè)大學(xué)附中高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),且SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),且SKIPIF1<0,由SKIPIF1<0且SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.3.(2022·全國(guó)·高三專題練習(xí))若存在兩個(gè)正實(shí)數(shù)x,y,使得等式2x+a(y﹣2ex)(lny﹣lnx)=0成立,則實(shí)數(shù)a的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C由2x+a(y﹣2ex)(lny﹣lnx)=0得2x+a(y﹣2ex)lnSKIPIF1<00,即2+a(SKIPIF1<02e)lnSKIPIF1<00,即設(shè)tSKIPIF1<0,則t>0,則條件等價(jià)為2+a(t﹣2e)lnt=0,即(t﹣2e)lntSKIPIF1<0有解,設(shè)g(t)=(t﹣2e)lnt,g′(t)=lnt+1SKIPIF1<0為增函數(shù),∵g′(e)=lne+1SKIPIF1<01+1﹣2=0,∴當(dāng)t>e時(shí),g′(t)>0,當(dāng)0<t<e時(shí),g′(t)<0,即當(dāng)t=e時(shí),函數(shù)g(t)取得極小值,為g(e)=(e﹣2e)lne=﹣e,即g(t)≥g(e)=﹣e,若(t﹣2e)lntSKIPIF1<0有解,則SKIPIF1<0e,即SKIPIF1<0e,則a<0或aSKIPIF1<0,故選:C.4.(2022·全國(guó)·高二)若函數(shù)SKIPIF1<0存在兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D根據(jù)題意SKIPIF1<0,SKIPIF1<0是SKIPIF1<0有兩解,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0,則SKIPIF1<0,故選:D.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:分離雙參,構(gòu)造函數(shù)1.(2022·全國(guó)·高二)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.若對(duì)任何SKIPIF1<0,SKIPIF1<0,恒成立,求SKIPIF1<0的取值范圍______.【答案】14,+∞##k|k≥14因?yàn)閷?duì)任何SKIPIF1<0,SKIPIF1<0,所以對(duì)任何SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù).SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,所以SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問題;②不能參變分離,直接對(duì)參數(shù)討論,研究SKIPIF1<0的單調(diào)性及最值;③特別地,個(gè)別情況下SKIPIF1<0恒成立,可轉(zhuǎn)換為SKIPIF1<0(二者在同一處取得最值).2.(2021·重慶巴蜀中學(xué)高三開學(xué)考試)SKIPIF1<0,均有SKIPIF1<0成立,則SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0不妨設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0對(duì)于SKIPIF1<0恒成立,所以SKIPIF1<0對(duì)于SKIPIF1<0恒成立,可得SKIPIF1<0對(duì)于SKIPIF1<0恒成立,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<03.(2021·湖南省邵東市第一中學(xué)高二期中)已知函數(shù)SKIPIF1<0,若SKIPIF1<0為區(qū)間SKIPIF1<0上的任意實(shí)數(shù),且對(duì)任意SKIPIF1<0,總有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的最小值為______________.【答案】3由題得SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,不妨設(shè)SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,原不等式即為SKIPIF1<0.令SKIPIF1<0,依題意,應(yīng)滿足SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上恒成立.即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0(i)若SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故此時(shí)SKIPIF1<0(ii)若SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;故此時(shí)SKIPIF1<0∴SKIPIF1<0,故對(duì)于任意SKIPIF1<0,滿足題設(shè)條件的SKIPIF1<0最小值為3.故答案為:34.(2022·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與SKIPIF1<0軸平行,求實(shí)數(shù)SKIPIF1<0的值;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)證明:若SKIPIF1<0,則對(duì)任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0.【答案】(1)SKIPIF1<0(2)答案不唯一,具體見解析(3)證明見解析(1)函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0;(2)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0若SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增.SKIPIF1<0若SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0及SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0單調(diào)遞增.SKIPIF1<0若SKIPIF1<0,即SKIPIF1<0,同理可得SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0單調(diào)遞增.(3)欲證SKIPIF1<0成立,即證明SKIPIF1<0SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0則SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0單調(diào)增加,從而當(dāng)SKIPIF1<0時(shí)有SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0成立.5.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),求SKIPIF1<0的取值范圍;(2)證明:若SKIPIF1<0,則對(duì)于任意的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見解析(1)由題意知,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)極值點(diǎn),所以SKIPIF1<0有兩個(gè)不等的正根,即SKIPIF1<0有兩個(gè)不等的正根,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,SKIPIF1<0.(2)構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0.由于SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,從而當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),同理可證SKIPIF1<0.綜上,對(duì)于任意的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有SKIPIF1<06.(2021·山東·高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,求SKIPIF1<0的極小值;(2)若對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)極小值為SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0,則SKIPIF1<0.SKIPIF1<0曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,此切線的斜率為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極小值SKIPIF1<0,故SKIPIF1<0的極小值為SKIPIF1<0;(2)對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立等價(jià)于:對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則對(duì)任意SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.高頻考點(diǎn)二:糅合雙參(比值糅合)1.(2022·貴州·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).(1)求a的取值范圍.(2)記兩個(gè)零點(diǎn)分別為x1,x2,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.(1)∵SKIPIF1<0∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,不合題意,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn),SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,易知函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn).綜上,函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),SKIPIF1<0.(2)由(1)知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,∴所以SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】利用導(dǎo)數(shù)研究零點(diǎn)問題:(1)確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可用導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象;(2)方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.可以通過(guò)構(gòu)造函數(shù)的方法,把問題轉(zhuǎn)化為研究構(gòu)造的函數(shù)的零點(diǎn)問題;(3)利用導(dǎo)數(shù)硏究函數(shù)零點(diǎn)或方程根,通常有三種思路:①利用最值或極值研究;②利用數(shù)形結(jié)合思想研究;③構(gòu)造輔助函數(shù)硏究.2.(2022·陜西·二模(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0的單調(diào)性;(2)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)單調(diào)遞增(2)證明見解析(1)由題意,函數(shù)SKIPIF1<0,則SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在(0,1)上單調(diào)遞增.(2)根據(jù)題意,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),∴SKIPIF1<0,SKIPIF1<0.兩式相減,可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0恒成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題關(guān)鍵點(diǎn)在于對(duì)雙變量的處理,通過(guò)對(duì)SKIPIF1<0,SKIPIF1<0作差,化簡(jiǎn)得到SKIPIF1<0,分別得到SKIPIF1<0后,換元令SKIPIF1<0,這樣就轉(zhuǎn)換為1個(gè)變量,再求導(dǎo)確定單調(diào)性即可求解.3.(2022·寧夏·銀川二中一模(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)單調(diào)遞增區(qū)間為SKIPIF1<0,無(wú)單調(diào)遞減區(qū)間(2)證明見解析(1)解:依題意SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,無(wú)單調(diào)遞減區(qū)間.(2)證明:要證SKIPIF1<0,即證SKIPIF1<0.依題意,SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不等實(shí)數(shù)根,不妨令SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,兩式相加可得SKIPIF1<0,兩式相減可得SKIPIF1<0,消去SKIPIF1<0,整理得SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,故只需證明SKIPIF1<0,即證明SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,從而SKIPIF1<0,因此SKIPIF1<0.故原不等式得證.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式SKIPIF1<0(或SKIPIF1<0)轉(zhuǎn)化為證明SKIPIF1<0(或SKIPIF1<0),進(jìn)而構(gòu)造輔助函數(shù)SKIPIF1<0;(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).4.(2022·黑龍江·鶴崗一中高三期末(理))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)答案見解析;(2)證明見解析.(1)函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,即函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,綜上可知:①當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,無(wú)單調(diào)遞增區(qū)間;②當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)依題意,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不等式SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所證不等式即SKIPIF1<0設(shè)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是增函數(shù),且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),且SKIPIF1<0,即SKIPIF1<0,從而所證不等式成立.【點(diǎn)睛】本題關(guān)鍵是換元SKIPIF1<0,結(jié)合已知條件可將雙變量轉(zhuǎn)換為單變量問題求解.5.(2022·山西長(zhǎng)治·高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.(2)若SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不相等的實(shí)數(shù)根,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)詳見解析(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞減,所以函數(shù)SKIPIF1<0的最大值是SKIPIF1<0,所以SKIPIF1<0;(2)若SKIPIF1<0是方程SKIPIF1<0的兩個(gè)不相等的實(shí)數(shù)根,即SKIPIF1<0又2個(gè)不同實(shí)數(shù)根SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證明SKIPIF1<0,只需證明SKIPIF1<0,即證明SKIPIF1<0,即證明SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令函數(shù)SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即得SKIPIF1<0【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過(guò)構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.高頻考點(diǎn)三:糅合雙參(差值糅合)1.(2022·全國(guó)·高三專題練習(xí))若SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0的最小值屬于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0單增,且SKIPIF1<0,SKIPIF1<0,則存在SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單減;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單增;又SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0易知SKIPIF1<0在SKIPIF1<0單減,即SKIPIF1<0故選:C2.(2021·內(nèi)蒙古·赤峰二中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù).(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)已知SKIPIF1<0,函數(shù)SKIPIF1<0恰有兩個(gè)不同的極值點(diǎn)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;(2)證明見解析.解:(1)SKIPIF1<0,SKIPIF1<0,(i)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上遞減;(ii)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增;綜上,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;(2)證明:SKIPIF1<0,依題意,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減得,SKIPIF1<0,因?yàn)镾KIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,兩邊同除以SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.3.(2022·天津?yàn)I海新·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),若函數(shù)SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(3)當(dāng)SKIPIF1<0時(shí),若函數(shù)SKIPIF1<0恰有兩個(gè)不同的極值點(diǎn)SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)答案見解析;(3)證明見解析.(1)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,該函數(shù)的定義域?yàn)镾KIPIF1<0.SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0.(i)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0;(ii)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,對(duì)任意的SKIPIF1<0,SKIPIF1<0且SKIPIF1<0不恒為零,此時(shí)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;(iii)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0.綜上所述當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,減區(qū)間為SKIPIF1<0.(3)證明:SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,所以,SKIPIF1<0,解得SKIPIF1<0.下面證明不等式SKIPIF1<0,其中SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,即證SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由已知可得SKIPIF1<0,兩式作差可得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故原不等式得證.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式SKIPIF1<0(或SKIPIF1<0)轉(zhuǎn)化為證明SKIPIF1<0(或SKIPIF1<0),進(jìn)而構(gòu)造輔助函數(shù)SKIPIF1<0;(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).高頻考點(diǎn)四:變更主元法在處理導(dǎo)數(shù)試題的過(guò)程中,我們經(jīng)常會(huì)遇到涉及兩個(gè)變量的不等式問題,比如一個(gè)變量為SKIPIF1<0,另個(gè)一變量(也可以是參數(shù))為SKIPIF1<0.在這種情況下,我們潛意識(shí)里總會(huì)把函數(shù)看作是關(guān)于變量SKIPIF1<0的函數(shù),希望通過(guò)利用導(dǎo)數(shù)研究SKIPIF1<0的性質(zhì),從而得出結(jié)論.如果說(shuō)SKIPIF1<0與SKIPIF1<0具有一定的關(guān)聯(lián),這種思維定勢(shì)會(huì)為我們的解決問題帶來(lái)方便.但在絕大多數(shù)情況下,SKIPIF1<0與SKIPIF1<0是沒有關(guān)聯(lián)的,這個(gè)時(shí)候這種思維定勢(shì)就會(huì)給我們的解題帶來(lái)障礙.此時(shí),我們不妨轉(zhuǎn)換一下視角,將字母SKIPIF1<0作為主要未知數(shù),然后來(lái)解決問題.這種選擇主要未知數(shù)(簡(jiǎn)稱主元)的方法,我們稱之為變更主元法.1.(2021·全國(guó)·高一專題練習(xí))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】SKIPIF1<0.解:由題意不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,可設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是關(guān)于SKIPIF1<0的一次函數(shù),要使題意成立只需SKIPIF1<0,即SKIPIF1<0,解SKIPIF1<0,即SKIPIF1<0得SKIPIF1<0,解SKIPIF1<0,即SKIPIF1<0得SKIPIF1<0,所以原不等式的解集為SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2022·全國(guó)·高三專題練習(xí))已知二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0的圖象經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的解析式:(2)若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)x的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.(1)設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0的圖象經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0的取值范圍是SKIPIF1<03.(2022·廣東·高州市長(zhǎng)坡中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0的極值;(2)若函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0恰有三個(gè)交點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)已知不等式SKIPIF1<0對(duì)任意SKIPIF1<0都成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0;(2)SKIPIF1<0(3)SKIPIF1<0(1)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以令SKIPIF1<0得:SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處取得極大值,在SKIPIF1<0處取得極小值,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0;(2)因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由(1)可知,要想函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0恰有三個(gè)交點(diǎn),則要滿足SKIPIF1<0,解得:SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0(3)即SKIPIF1<0,整理得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,令SKIPIF1<0由于SKIPIF1<0,所以SKIPIF1<0,由基本不等式得:SKIPIF1<0,當(dāng)且
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省滄州市多校聯(lián)考2025-2026學(xué)年高二(上)期末物理試卷(含答案)
- 廣東省廣州市白云區(qū)2025-2026學(xué)年七年級(jí)上學(xué)期期末考試英語(yǔ)試題(含答案無(wú)聽力原文及音頻)
- 北京市豐臺(tái)區(qū)2025-2026學(xué)年五年級(jí)學(xué)期期末語(yǔ)文試題(含答案)
- 五四的題目及答案
- 網(wǎng)絡(luò)管理員試題及答案
- 慶三八婦女節(jié)演講稿范文集錦6篇
- 北京市順義區(qū)2025-2026學(xué)年八年級(jí)上學(xué)期期末考試英語(yǔ)試題(原卷版+解析版)
- 2023年節(jié)溫器行業(yè)分析報(bào)告及未來(lái)五至十年行業(yè)發(fā)展報(bào)告
- 久治事業(yè)編招聘2022年考試模擬試題及答案解析40
- 初中學(xué)生安全教育
- 重慶律師收費(fèi)管理辦法
- 安慶四中學(xué)2024年七上數(shù)學(xué)期末考試試題含解析
- 帶狀皰疹中醫(yī)病例討論
- 經(jīng)濟(jì)法學(xué)-002-國(guó)開機(jī)考復(fù)習(xí)資料
- T/CCMA 0147-2023異型吊籃安裝、使用和拆卸安全技術(shù)規(guī)程
- 【高中數(shù)學(xué)競(jìng)賽真題?強(qiáng)基計(jì)劃真題考前適應(yīng)性訓(xùn)練】 專題03三角函數(shù) 真題專項(xiàng)訓(xùn)練(全國(guó)競(jìng)賽+強(qiáng)基計(jì)劃專用)原卷版
- SL631水利水電工程單元工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)第1部分:土石方工程
- 危重新生兒救治中心危重新生兒管理制度
- (二調(diào))武漢市2025屆高中畢業(yè)生二月調(diào)研考試 英語(yǔ)試卷(含標(biāo)準(zhǔn)答案)+聽力音頻
- 醫(yī)院傳染病疫情報(bào)告管理工作職責(zé)
- 汽車修理廠輪胎采購(gòu) 投標(biāo)方案(技術(shù)標(biāo) )
評(píng)論
0/150
提交評(píng)論