版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古自治區(qū)包頭市二中高三第二次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.2.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.3.若點是角的終邊上一點,則()A. B. C. D.4.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線5.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.6.計算等于()A. B. C. D.7.已知,函數,若函數恰有三個零點,則()A. B.C. D.8.拋物線的焦點為,點是上一點,,則()A. B. C. D.9.設復數滿足,則()A.1 B.-1 C. D.10.已知函數,則()A. B.1 C.-1 D.011.如下的程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.1512.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.60二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.15.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.16.一次考試后,某班全班50個人數學成績的平均分為正數,若把當成一個同學的分數,與原來的50個分數一起,算出這51個分數的平均值為,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.18.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)已知函數(為實常數).(1)討論函數在上的單調性;(2)若存在,使得成立,求實數的取值范圍.20.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.21.(12分)在中,角的對邊分別為,且.(1)求角的大?。唬?)若,求邊上的高.22.(10分)已知,,為正數,且,證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
首先根據垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.2、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..3、A【解析】
根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、C【解析】
根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.5、D【解析】
根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.6、A【解析】
利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.7、C【解析】
當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.8、B【解析】
根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.9、B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.10、A【解析】
由函數,求得,進而求得的值,得到答案.【詳解】由題意函數,則,所以,故選A.【點睛】本題主要考查了分段函數的求值問題,其中解答中根據分段函數的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.11、A【解析】
根據題意可知最后計算的結果為的最大公約數.【詳解】輸入的a,b分別為,,根據流程圖可知最后計算的結果為的最大公約數,按流程圖計算,,,,,,,易得176和320的最大公約數為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數的最大公約數,難度較易.12、D【解析】
先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.二、填空題:本題共4小題,每小題5分,共20分。13、2889【解析】
先計算集合中最小的數為,最大的數,可得,求和即得解.【詳解】當時,集合中最小數;當時,得到集合中最大的數;故答案為:2889【點睛】本題考查了數列與集合綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.14、【解析】
設,由雙曲線的定義得出:,由得為等腰三角形,設,根據,可求出,得出,再結合焦點三角形,利用余弦定理:求出和的關系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.15、8【解析】
根據偽代碼逆向運算求得結果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結果:【點睛】本題考查算法中的語言,屬于基礎題.16、1【解析】
根據均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.18、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設平面BEF的法向量為,,,設平面的法向量設二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學生的計算能力,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.19、(1)見解析(2)【解析】
(1)分類討論的值,利用導數證明單調性即可;(2)利用導數分別得出,,時,的最小值,即可得出實數的取值范圍.【詳解】(1),.當即時,,,此時,在上單調遞增;當即時,時,,在上單調遞減;時,,在上單調遞增;當即時,,,此時,在上單調遞減;(2)當時,因為在上單調遞增,所以的最小值為,所以當時,在上單調遞減,在上單調遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究函數的存在性問題,屬于中檔題.20、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當的斜率為時和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當的斜率為時,,,于是,到的距離為,直線與圓相切.當的斜率不為時,設的方程為,與聯立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當等號成立,所以面積的最小值為1.【點睛】本題主要考查直線與橢圓的位置關系、直線與圓的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉化思想,屬于難題.21、(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進而可得,由,可求出的值,設邊上的高為,可得的面積為,從而可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《月有陰晴圓缺》課件
- 2025年信陽藝術職業(yè)學院馬克思主義基本原理概論期末考試模擬題及答案解析(奪冠)
- 2025年上思縣招教考試備考題庫帶答案解析(必刷)
- 2024年鄂城鋼鐵廠職工大學馬克思主義基本原理概論期末考試題帶答案解析
- 2024年聶榮縣幼兒園教師招教考試備考題庫帶答案解析
- 2025年會同縣幼兒園教師招教考試備考題庫帶答案解析
- 2025年和平縣幼兒園教師招教考試備考題庫帶答案解析(必刷)
- 2024年縉云縣幼兒園教師招教考試備考題庫附答案解析(奪冠)
- 2025年唐縣幼兒園教師招教考試備考題庫含答案解析(奪冠)
- 保山市2025-2026學年(上期)高三期末考試歷史試卷(含答案解析)
- 2025至2030全球及中國變壓器監(jiān)測行業(yè)調研及市場前景預測評估報告
- 2025年世界職業(yè)院校技能大賽中職組“護理技能”賽項考試題庫(含答案)
- T∕HAICWM 008-2025 安化黃精標準體系
- 2025機械行業(yè)研究:可控核聚變專題:“十五五”資本開支加速“人造太陽”漸行漸近
- ECMO治療期間酸堿失衡糾正方案
- (2025年)羽毛球三級裁判練習試題附答案
- 安全運營部工作職責
- 機房應急停電處理標準流程
- 電力設備檢測方案
- AI大模型在混凝土增強模型中的應用研究
- GB/T 18006.1-2025塑料一次性餐飲具通用技術要求
評論
0/150
提交評論