2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆河北容城博奧學(xué)校高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.2.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.73.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.4.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.5.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.7.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.8.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.9.已知,,則等于().A. B. C. D.10.已知函數(shù),集合,,則()A. B.C. D.11.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.12.已知為實數(shù)集,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.14.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.15.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____16.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.18.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.20.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.21.(12分)購買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購車補貼.某調(diào)研機構(gòu)對擬購買該品牌汽車的消費者,就購車補貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.22.(10分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.2、B【解析】

根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.3、C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達(dá)式,在中,可以計算出的一個表達(dá)式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.4、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.5、B【解析】

根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.6、D【解析】

運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7、B【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.8、D【解析】

如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.9、B【解析】

由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.10、C【解析】

分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.11、A【解析】

利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、C【解析】

求出集合,,,由此能求出.【詳解】為實數(shù)集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

取的中點,設(shè)等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設(shè)等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關(guān)鍵在于根據(jù)三棱錐的面的關(guān)系、棱的關(guān)系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.14、【解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.15、【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.16、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數(shù)的恒等變換,考查化簡整理的運算能力,屬于中檔題.18、(1)(2)【解析】

(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和.【詳解】解:(1)由是遞增等比數(shù)列,,聯(lián)立,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結(jié)合可得,∴數(shù)列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.19、(1)見解析;(2).【解析】

(1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時,轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,,所以,存在使得,即.所以,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),故當(dāng)時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時,為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時,有兩個不同的零點,,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為.注意到時,,且此時,(?。┊?dāng)時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時,,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運算能力,屬于較難題.20、見解析【解析】

(1)如圖,連接,交于點,連接,,則為的中點,因為為的中點,所以,又,所以,從而,,,四點共面.因為平面,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以(2)因為,為的中點,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,因為,,所以,,,,所以,,.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為,所以,所以平面與平面所成二面角的正弦值為.21、(1)1.7;(2),見解析;(2)2.【解析】

(1)平均數(shù)的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預(yù)期值的平均數(shù)的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預(yù)期值高于3萬元的頻率為,則,所以的分布列為,數(shù)學(xué)期望;(3)將2018年11月至2019年3月的月份數(shù)依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數(shù)據(jù)呈線性相關(guān)關(guān)系,因為,,,,則,,所以回歸直線方程為,當(dāng)時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論