石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁石家莊鐵路職業(yè)技術(shù)學(xué)院《商務(wù)智能分析》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要對數(shù)據(jù)進(jìn)行季節(jié)性分解,以下哪種方法在Python中常用?()A.statsmodels庫中的seasonal_decompose函數(shù)B.scikit-learn庫中的decomposition模塊C.pandas庫中的resample函數(shù)D.matplotlib庫中的plot函數(shù)2、數(shù)據(jù)分析中,數(shù)據(jù)挖掘技術(shù)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于數(shù)據(jù)挖掘的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以使用多種算法,如決策樹、聚類、關(guān)聯(lián)規(guī)則挖掘等B.數(shù)據(jù)挖掘的結(jié)果需要進(jìn)行解釋和評估,以確定其有效性和實(shí)用性C.數(shù)據(jù)挖掘只適用于大規(guī)模數(shù)據(jù)集,對于小數(shù)據(jù)集沒有太大作用D.數(shù)據(jù)挖掘可以幫助企業(yè)做出更明智的決策,提高競爭力3、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示多個(gè)變量之間的相關(guān)性,以下哪種圖表較為合適?()A.熱力圖B.平行坐標(biāo)圖C.?;鶊DD.以上都是4、在數(shù)據(jù)分析的深度學(xué)習(xí)模型中,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的描述,不準(zhǔn)確的是()A.CNN適用于處理圖像和音頻等具有空間結(jié)構(gòu)的數(shù)據(jù)B.CNN通過卷積層和池化層自動提取特征C.CNN的訓(xùn)練需要大量的數(shù)據(jù)和較高的計(jì)算資源D.CNN不能用于文本數(shù)據(jù)的處理5、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖6、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集。以下關(guān)于主成分分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的主要信息B.通過計(jì)算協(xié)方差矩陣的特征值和特征向量來確定主成分C.主成分分析可以消除變量之間的相關(guān)性,使數(shù)據(jù)更易于分析D.主成分分析后的維度數(shù)量是固定的,不能根據(jù)需要進(jìn)行調(diào)整7、在數(shù)據(jù)分析的過程中,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級差異較大C.數(shù)據(jù)的類型比較單一D.以上都不是8、在進(jìn)行回歸分析時(shí),如果殘差不滿足正態(tài)分布,可能會對模型產(chǎn)生什么影響?()A.影響模型的準(zhǔn)確性B.導(dǎo)致系數(shù)估計(jì)有偏差C.模型的預(yù)測能力下降D.以上都是9、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具和技術(shù)有很多,其中Python是一種常用的編程語言。以下關(guān)于Python在數(shù)據(jù)可視化中的作用,錯(cuò)誤的是?()A.Python可以使用各種數(shù)據(jù)可視化庫,如Matplotlib、Seaborn等,進(jìn)行數(shù)據(jù)可視化B.Python可以進(jìn)行數(shù)據(jù)的處理和分析,為數(shù)據(jù)可視化提供數(shù)據(jù)支持C.Python的數(shù)據(jù)可視化功能強(qiáng)大,可以制作各種復(fù)雜的圖表和圖形D.Python只適用于專業(yè)的數(shù)據(jù)分析師,對于非專業(yè)用戶來說難以掌握10、在數(shù)據(jù)挖掘中,聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述,錯(cuò)誤的是?()A.可以將數(shù)據(jù)分成不同的類別B.類別之間的差異明顯C.不需要事先指定類別數(shù)量D.聚類結(jié)果是絕對準(zhǔn)確的11、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評估指標(biāo)來衡量模型的性能。假設(shè)要評估一個(gè)分類模型的效果,以下關(guān)于評估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類樣本被正確預(yù)測的比例,適用于關(guān)注正類樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評估指標(biāo),但計(jì)算較為復(fù)雜D.評估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類型和應(yīng)用場景無關(guān)12、對于數(shù)據(jù)分析中的分類問題,假設(shè)要預(yù)測一個(gè)郵件是否為垃圾郵件,基于郵件的內(nèi)容、發(fā)件人、主題等特征。以下哪種分類算法在處理這種文本分類任務(wù)時(shí)可能效果較好?()A.決策樹,通過一系列規(guī)則進(jìn)行分類B.支持向量機(jī),尋找最優(yōu)分類超平面C.樸素貝葉斯,基于概率進(jìn)行分類D.不進(jìn)行分類,將所有郵件視為正常郵件13、在數(shù)據(jù)分析中,模型的可解釋性對于理解模型的決策過程和結(jié)果非常重要。假設(shè)建立了一個(gè)用于信用評估的模型,需要向決策者解釋模型是如何做出信用評分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢?()A.決策樹模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機(jī)森林模型D.以上模型可解釋性相同14、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們要分析超市購物籃數(shù)據(jù)。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項(xiàng)是錯(cuò)誤的?()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的情況下,包含結(jié)果項(xiàng)集的概率C.提升度大于1表示關(guān)聯(lián)規(guī)則是有效的,小于1表示是無效的D.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡單的兩兩關(guān)聯(lián)關(guān)系,不能處理復(fù)雜的關(guān)聯(lián)模式15、在數(shù)據(jù)庫中,若要執(zhí)行事務(wù)處理以確保數(shù)據(jù)的一致性,以下哪個(gè)特性是關(guān)鍵的?()A.原子性B.一致性C.隔離性D.持久性二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)標(biāo)注,包括標(biāo)注的方法、質(zhì)量控制和標(biāo)注人員的管理,并舉例說明標(biāo)注數(shù)據(jù)在機(jī)器學(xué)習(xí)中的作用。2、(本題5分)簡述貝葉斯分類算法的原理和特點(diǎn),舉例說明其在不確定性情況下的分類優(yōu)勢,并與其他常見分類算法進(jìn)行比較。3、(本題5分)在處理圖像數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋圖像特征提取、目標(biāo)檢測等概念,并舉例說明應(yīng)用。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在當(dāng)今數(shù)字化時(shí)代,企業(yè)積累了海量的數(shù)據(jù)。以某大型電商企業(yè)為例,論述如何運(yùn)用數(shù)據(jù)分析來優(yōu)化其商品推薦系統(tǒng),包括數(shù)據(jù)收集、特征工程、模型選擇與訓(xùn)練、評估指標(biāo)等方面,以及如何根據(jù)分析結(jié)果不斷改進(jìn)推薦效果,以提高用戶滿意度和購買轉(zhuǎn)化率。2、(本題5分)在餐飲行業(yè),數(shù)據(jù)分析可以用于菜單優(yōu)化、客戶滿意度分析、庫存管理等方面。論述如何通過數(shù)據(jù)分析提高餐廳的經(jīng)營效益、控制成本、提升客戶體驗(yàn),并分析外賣數(shù)據(jù)對餐飲業(yè)務(wù)的影響。3、(本題5分)在在線招聘平臺,求職者和企業(yè)的行為數(shù)據(jù)對于匹配效率和服務(wù)質(zhì)量提升具有重要意義。以某在線招聘網(wǎng)站為例,探討如何運(yùn)用數(shù)據(jù)分析來優(yōu)化職位推薦、評估企業(yè)招聘效果、提高求職者滿意度,以及如何處理數(shù)據(jù)的敏感性和隱私保護(hù)問題。4、(本題5分)對于電商平臺的用戶信用評估,論述如何運(yùn)用數(shù)據(jù)分析構(gòu)建信用評估模型,防范信用風(fēng)險(xiǎn),促進(jìn)交易安全。5、(本題5分)醫(yī)療行業(yè)積累了大量的患者數(shù)據(jù),包括病歷、診斷結(jié)果、治療方案等。論述如何利用數(shù)據(jù)分析技術(shù)挖掘這些數(shù)據(jù)中的潛在模式和規(guī)律,以輔助疾病診斷、治療方案優(yōu)化以及醫(yī)療資源的合理分配,并探討數(shù)據(jù)分析在醫(yī)療領(lǐng)域面臨的倫理和法律問題。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某連鎖酒店擁有各分店的入住率、客

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論