東南大學《自動化與智能科學與技術概論》2023-2024學年第二學期期末試卷_第1頁
東南大學《自動化與智能科學與技術概論》2023-2024學年第二學期期末試卷_第2頁
東南大學《自動化與智能科學與技術概論》2023-2024學年第二學期期末試卷_第3頁
東南大學《自動化與智能科學與技術概論》2023-2024學年第二學期期末試卷_第4頁
東南大學《自動化與智能科學與技術概論》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁東南大學《自動化與智能科學與技術概論》

2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的情感分析任務中,需要判斷文本所表達的情感傾向,如積極、消極或中性。假設要分析社交媒體上用戶對某一產品的評價情感,以下哪種方法在處理大量非結構化文本數(shù)據時效果較好?()A.基于詞典的方法B.基于機器學習的分類方法C.基于深度學習的神經網絡方法D.人工閱讀和判斷2、人工智能中的自動推理技術旨在讓計算機能夠自動進行邏輯推理和證明。假設要開發(fā)一個能夠自動解決數(shù)學定理證明問題的系統(tǒng),以下關于自動推理的描述,正確的是:()A.現(xiàn)有的自動推理技術可以輕松解決所有復雜的數(shù)學定理證明問題B.自動推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學習和適應新的推理模式C.結合機器學習和符號推理的方法,可以提高自動推理系統(tǒng)的能力和靈活性D.自動推理在人工智能中的應用范圍非常有限,沒有實際價值3、當利用人工智能進行藥物研發(fā),例如預測藥物分子的活性和副作用,以下哪種技術和數(shù)據可能是重要的支撐?()A.化學信息學和分子模擬B.生物醫(yī)學數(shù)據和機器學習C.藥物臨床試驗數(shù)據和統(tǒng)計分析D.以上都是4、當利用人工智能進行金融風險評估,例如評估信用風險和市場風險,以下哪種模型和特征可能是重要的組成部分?()A.邏輯回歸模型和財務指標B.決策樹模型和交易數(shù)據C.深度學習模型和宏觀經濟數(shù)據D.以上都是5、在人工智能的發(fā)展歷程中,機器學習作為重要的分支取得了顯著的成果。假設要開發(fā)一個能夠自動識別手寫數(shù)字的系統(tǒng),需要從大量的手寫數(shù)字圖像數(shù)據中學習特征和模式。以下哪種機器學習算法在處理這種圖像數(shù)據分類問題上具有較大的優(yōu)勢,同時能夠適應不同的書寫風格和變形?()A.決策樹算法B.樸素貝葉斯算法C.卷積神經網絡(CNN)D.支持向量機(SVM)6、人工智能中的智能搜索算法常用于解決復雜的優(yōu)化問題。假設我們要在一個大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線。以下哪種智能搜索算法在處理這類問題時可能具有優(yōu)勢?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法7、在人工智能的文本分類任務中,例如將新聞文章分類為政治、經濟、體育等類別。假設數(shù)據集存在類別不平衡的問題,某些類別的樣本數(shù)量遠遠多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進行過采樣,增加其數(shù)量B.對多數(shù)類進行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據直接訓練模型,不做處理D.只關注樣本數(shù)量多的類別,忽略少數(shù)類別8、人工智能在農業(yè)領域的應用可以幫助提高農作物產量和質量。假設要開發(fā)一個系統(tǒng)來監(jiān)測農田中的病蟲害情況,需要能夠準確識別病蟲害的類型和嚴重程度。以下哪種圖像分析技術和機器學習算法的組合在這個任務中最為有效?()A.圖像分割技術結合決策樹算法B.目標檢測技術結合支持向量機算法C.特征提取技術結合樸素貝葉斯算法D.深度學習中的卷積神經網絡結合隨機森林算法9、在人工智能的應用于教育領域,個性化學習是一個重要的方向。假設我們要為學生提供個性化的學習路徑推薦,以下關于個性化學習的說法,哪一項是不正確的?()A.需要根據學生的學習歷史和特點進行定制B.完全依賴人工智能算法,不需要教師的參與C.可以提高學生的學習效率和效果D.要考慮學生的興趣和能力差異10、人工智能中的語音識別技術能夠將人類的語音轉換為文字。以下關于語音識別的敘述,不準確的是()A.語音識別系統(tǒng)通常包括聲學模型、語言模型和解碼器等部分B.語音識別的準確率受到語音質量、口音和背景噪聲等因素的影響C.語音識別技術已經非常完美,能夠準確識別各種口音和語速的語音D.深度學習的應用顯著提高了語音識別的性能和準確率11、人工智能中的專家系統(tǒng)是一種基于知識的系統(tǒng)。假設有一個用于故障診斷的專家系統(tǒng),需要將專家的知識和經驗轉化為系統(tǒng)的規(guī)則和推理機制。以下關于專家系統(tǒng)的描述,哪一項是不準確的?()A.專家系統(tǒng)的性能取決于知識的準確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識C.專家系統(tǒng)的開發(fā)需要大量的時間和專業(yè)知識D.專家系統(tǒng)一旦開發(fā)完成,就不需要進行更新和維護12、在人工智能的發(fā)展過程中,算法的創(chuàng)新起著關鍵作用。假設我們要設計一種新的人工智能算法,以下關于算法設計的原則,哪一項是不正確的?()A.高效性B.可擴展性C.復雜性優(yōu)先D.創(chuàng)新性13、在人工智能的語音識別任務中,需要克服許多挑戰(zhàn)。假設要開發(fā)一個能夠在嘈雜環(huán)境中準確識別語音的系統(tǒng),以下關于解決噪聲問題的方法,哪一項是不正確的?()A.使用麥克風陣列技術,對多個麥克風采集的信號進行處理,增強有用信號,抑制噪聲B.采用深度學習中的降噪自編碼器,對輸入的語音信號進行預處理,去除噪聲C.完全忽略噪聲,只關注語音的關鍵特征D.利用語音增強算法,提高語音的信噪比14、在人工智能的醫(yī)療影像診斷中,深度學習模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設要評估一個深度學習模型在乳腺X光影像診斷中的性能,以下哪個指標是最重要的?()A.準確率B.召回率C.F1值D.特異性15、人工智能中的聯(lián)邦學習是一種新興的技術。假設多個機構想要在保護數(shù)據隱私的前提下共同訓練一個模型,以下關于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習中,各機構的數(shù)據需要集中到一個中心服務器進行統(tǒng)一訓練B.聯(lián)邦學習能夠在不共享原始數(shù)據的情況下實現(xiàn)模型的協(xié)同訓練C.聯(lián)邦學習只適用于小規(guī)模的數(shù)據和簡單的模型結構D.聯(lián)邦學習過程中不存在數(shù)據安全和隱私泄露的風險二、簡答題(本大題共4個小題,共20分)1、(本題5分)談談人工智能在音樂生成中的技術。2、(本題5分)簡述人工智能在智能人力資源規(guī)劃中的策略。3、(本題5分)說明人工智能在消費者行為分析和市場細分中的方法。4、(本題5分)說明人工智能在構建人類命運共同體中的貢獻。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用Python中的Scikit-learn庫,實現(xiàn)譜聚類算法對圖像數(shù)據進行分割,比較不同參數(shù)設置下的分割效果。2、(本題5分)運用Python的PyTorch框架,搭建一個基于注意力機制的知識圖譜推理模型,進行知識的推斷和補充。3、(本題5分)使用自然語言生成技術,如基于循環(huán)神經網絡的語言模型,生成一段文本,給定一個主題或開頭,讓模型自動續(xù)寫內容。4、(本題5分)利用Python中的TensorFlow框架,構建一個基于變分量子自編碼器(VariationalQuantumAutoencoder)的模型,探索量子計算在人工智能中的應用。5、(本題5分)使用TensorFlow構建一個生成對抗網絡(GAN),用于生成手寫數(shù)字圖像。定義生成器和判別器的結構,通過對抗訓練使生成器能夠生成逼真的數(shù)字圖像,展示生成的圖像效果并評估其質量。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)以某智能民間藝術作品收藏管理系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論