版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省沈陽市五校協(xié)作體2025屆新課標I卷高考考前15天終極沖刺數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據2010年至2016年的數(shù)據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.2.已知函數(shù),集合,,則()A. B.C. D.3.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.4.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大5.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.6.已知雙曲線()的漸近線方程為,則()A. B. C. D.7.已知向量與的夾角為,,,則()A. B.0 C.0或 D.8.函數(shù)的圖象可能為()A. B.C. D.9.設復數(shù)滿足(為虛數(shù)單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}12.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.14.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則對應的排法有______種;______;15.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.16.在的展開式中的系數(shù)為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.18.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.19.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.20.(12分)已知,,,.(1)求的值;(2)求的值.21.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.22.(10分)已知,,且.(1)求的最小值;(2)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據圖像所給的數(shù)據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.2、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.3、A【解析】
根據球的特點可知截面是一個圓,根據等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.4、C【解析】
,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.5、D【解析】
按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.6、A【解析】
根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.7、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.8、C【解析】
先根據是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.9、A【解析】
由復數(shù)的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數(shù)對應的點所在象限的求解,涉及到復數(shù)的除法運算,屬于基礎題.10、C【解析】
由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義.掌握復數(shù)除法法則是解題關鍵.11、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎題.12、C【解析】
根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據零點個數(shù)求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數(shù)圖象與性質的綜合,其中涉及到換元法求解三角函數(shù)值域的問題,難度較難.對形如的函數(shù)的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數(shù)的值域,同時要注意新元的范圍.14、36;1.【解析】
的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應用,離散型隨機變量的分布列以及數(shù)學期望,屬于中檔題.15、2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是??碱}型.16、2【解析】
首先求出的展開項中的系數(shù),然后根據系數(shù)為即可求出的取值.【詳解】由題知,當時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)28種;(2)分布見解析,.【解析】
(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.18、(1)不在,證明見詳解;(2)【解析】
(1)假設直線方程,并于拋物線方程聯(lián)立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【詳解】(1)設直線方程,根據題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結合韋達定理,屬難題.19、(1)見解析;(2)存在,長【解析】
(1)先證面,又因為面,所以平面平面.(2)根據題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設,;∴,,設平面的法向量為,∴,不防設.∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.【點睛】本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數(shù)問題,是幾何綜合題,考查空間想象力以及計算能力.20、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關系的應用,考查運算能力.21、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數(shù)列,可求得的通項;(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全員證考試試題及答案
- 2025年關于《黨政機關厲行節(jié)約反對浪費條例》知識題庫(附答案)
- 2025護士考點試題及答案
- 銀行入營考試題目及答案
- 等壓式焊炬試題及答案
- 大連莊河去年考試題及答案
- 未來五年ZTG燭式過濾機企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 普外科引流管并發(fā)癥預防與處理
- 2026黑龍江齊齊哈爾市建華區(qū)消防大隊政府專職消防員招聘11人備考題庫必考題
- 中共自貢市貢井區(qū)委社會工作部2025年新興領域黨建工作專員招聘參考題庫必考題
- 2024-2025閩教版小學英語五年級上冊期末考試測試卷及參考答案(共3套)
- 組件設計文檔-MBOM構型管理
- 臨床協(xié)調員CRC年度總結
- 編鐘樂器市場洞察報告
- 負壓沖洗式口腔護理
- 山東省泰安市2024-2025學年高一物理下學期期末考試試題含解析
- 凈化車間液氮洗操作規(guī)程
- 《中電聯(lián)標準-抽水蓄能電站鋼筋混凝土襯砌水道設計導則》
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
- 道路綠化養(yǎng)護投標方案(技術方案)
- 2023年內蒙古呼倫貝爾市海拉爾區(qū)公開招聘公辦幼兒園控制數(shù)人員80名高頻筆試、歷年難易點考題(共500題含答案解析)模擬試卷
評論
0/150
提交評論