2024-2025學年下學期高二物理教科版期中必刷??碱}之洛倫茲力_第1頁
2024-2025學年下學期高二物理教科版期中必刷??碱}之洛倫茲力_第2頁
2024-2025學年下學期高二物理教科版期中必刷??碱}之洛倫茲力_第3頁
2024-2025學年下學期高二物理教科版期中必刷??碱}之洛倫茲力_第4頁
2024-2025學年下學期高二物理教科版期中必刷常考題之洛倫茲力_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第53頁(共53頁)2024-2025學年下學期高二物理教科版(2019)期中必刷??碱}之洛倫茲力一.選擇題(共7小題)1.(2024秋?惠山區(qū)校級期末)石墨烯是一種由碳原子組成的單層二維蜂窩狀晶格結(jié)構(gòu)新材料,具有豐富的電學性能?,F(xiàn)設(shè)計一電路測量某二維石墨烯樣品的載流子(電子)濃度。如圖(a)所示,在長為a,寬為b的石墨烯表面加一垂直向里的勻強磁場,磁感應強度為B,電極1、3間通以恒定電流I,電極2、4間將產(chǎn)生電壓U。當I=1.60×10﹣3A時,測得U﹣B關(guān)系圖線如圖(b)所示,元電荷e=1.60×10﹣19C,則此樣品每平方米載流子數(shù)最接近()A.2.7×1015 B.3.7×1016 C.2.7×1019 D.3.7×10202.(2024秋?大連期末)如圖為利用霍爾元件進行微小位移測量的實驗裝置。在兩塊完全相同、同極相對放置的磁體縫隙中放入金屬材料制成的霍爾元件,當霍爾元件處于中間位置時磁感應強度為0,霍爾電壓UH(霍爾元件前后兩表面的電勢差)也為0,將該點作為直角坐標系的原點。已知沿x軸方向磁感應強度大小B=kx(k為常數(shù),且k>0),霍爾元件中通以沿y軸正方向的恒定電流,當霍爾元件沿x軸移動時,即有霍爾電壓UH輸出,下列說法正確的是()A.霍爾元件有x軸正方向位移時,前表面的電勢高于后表面的電勢 B.UH的大小與元件在水平方向位移的大小成正比 C.霍爾元件的位移一定時,只增大y方向恒定電流的大小,UH的大小不變 D.霍爾元件的位移一定時,只增大元件垂直磁場方向的面積,UH的大小增大3.(2024秋?朝陽區(qū)校級期末)半導體內(nèi)導電的粒子—“載流子”有兩種:自由電子和空穴(空穴可視為能自由移動帶正電的粒子),以自由電子導電為主的半導體叫N型半導體,以空穴導電為主的半導體叫P型半導體。如圖為檢驗半導體材料的類型和對材料性能進行測試的原理圖,圖中一塊長為a、寬為b、厚為c的半導體樣品板放在沿y軸正方向的勻強磁場中,磁感應強度大小為B。當有大小為I、沿x軸正方向的恒定電流通過樣品板時,會在與z軸垂直的兩個側(cè)面之間產(chǎn)生霍爾電勢差UH,下列說法中正確的是()A.如果下表面電勢高,則該半導體為P型半導體 B.如果下表面電勢高,則該半導體為N型半導體 C.半導體樣品板的長度a越大,UH越大 D.半導體樣品板的寬度b越小,UH越大4.(2024秋?溫州期末)如圖所示,在xOy平面內(nèi),有一粒子源沿x正方向發(fā)射速率相等的質(zhì)量為m、電荷量為+q的帶電粒子。粒子射入一個半徑為R、中心位于原點O的圓形勻強磁場區(qū)域,磁場方向垂直xOy平面向里,磁感應強度的大小為B。已知沿x軸入射的粒子經(jīng)磁場偏轉(zhuǎn)后從P點射出。下列說法正確的是()A.粒子的速率v=B.沿x軸入射的粒子在磁場中的運動時間t=C.不同位置入射的粒子會從不同位置離開磁場 D.關(guān)于x軸對稱入射的兩個粒子從磁場中離開時的速度方向關(guān)于y軸對稱5.(2024秋?濟南期末)霍爾效應的應用非常廣泛。如圖所示,金屬片長度為a,寬度為b,厚度為h,水平放置于方向豎直向下,磁感應強度大小為B的勻強磁場中,金屬片左右兩端與電動勢為E的直流電源及滑動變阻器R構(gòu)成閉合回路,金屬片前后MN兩端接理想電壓表V。不計電源內(nèi)阻及金屬片電阻,閉合電鍵S,下列說法正確的是()A.金屬片的前端M的電勢低于后端N的電勢 B.僅減小磁感應強度B,電壓表示數(shù)增大 C.僅增大滑動變阻器R的阻值,電壓表示數(shù)減小 D.僅增大金屬片的長度a,電壓表示數(shù)減小6.(2025?東湖區(qū)校級一模)如圖所示,圓形區(qū)域半徑為R,區(qū)域內(nèi)有一垂直紙面向外的勻強磁場,磁感應強度的大小為B=mvqR。位于磁場邊界最低點P處有一粒子源,同時將n個帶負電的粒子沿紙面內(nèi)各個方向均勻射入磁場區(qū)域,粒子質(zhì)量為m、電荷量大小為q、速率均為v。A、C為圓形區(qū)域水平直徑的兩個端點,足夠長的彈性擋板MN、M′N′與圓形區(qū)域在AA.所有粒子均與右側(cè)擋板碰撞,最終全部從D點離開磁場 B.粒子從P點出發(fā)到從D點離開磁場,運動的最長時間為t=C.粒子陸續(xù)與擋板碰撞過程中對擋板的平均作用力為F=D.粒子陸續(xù)從D點離開磁場過程中等效電流為I7.(2024秋?惠山區(qū)校級期末)如圖所示,在磁感應強度大小為B、方向垂直于紙面向外的范圍足夠大的勻強磁場內(nèi),固定著傾角為θ的絕緣斜面,一個質(zhì)量為m、電荷量為﹣q的帶電小物塊以初速度v0沿斜面向上運動,小物塊與斜面間的動摩擦因數(shù)為μ。設(shè)滑動時電荷量不變,在小物塊上滑過程中,其速度v與時間t,加速度a與時間t和動能Ek與位移x的關(guān)系圖像,可能正確的是()A. B. C. D.二.多選題(共5小題)(多選)8.(2024秋?大連期末)如圖所示,豎直平面內(nèi)有一半徑為R的圓形區(qū)域內(nèi)存在著垂直于該平面向里的勻強磁場,磁感應強度大小為B。一質(zhì)量為m、電荷量為q的帶電粒子(不計重力)以速度v0沿水平方向從P點射入磁場,其速度方向與半徑OP的夾角為45°,經(jīng)過一段時間后,粒子恰好從O點正下方的Q點射出磁場,下列說法正確的是()A.該粒子入射的速度大小為qBRmB.該粒子在磁場中運動的時間為3πRC.若只改變帶電粒子的入射方向,其在磁場中的運動時間可能變長 D.若帶電粒子的入射點向下平移R2,其射出磁場的位置在Q(多選)9.(2024秋?青島期末)汽車的ABS是一種能夠防止車輪抱死的制動系統(tǒng),該系統(tǒng)的傳感器主要基于霍爾效應原理。如圖是傳感器元件的簡易圖,水平放置的元件處于豎直向下的勻強磁場中,長、寬、高分別是a、c、h。元件內(nèi)的電子定向移動形成恒定電流I,電流的方向向右,下列說法正確的是()A.電子定向移動的方向是從右到左 B.該元件前表面的電勢高于后表面的電勢 C.若增大寬度c,前后表面電勢差的絕對值增大 D.增大磁感應強度,前后表面電勢差的絕對值增大(多選)10.(2024秋?濟南期末)如圖所示,在直角坐標系xOy平面內(nèi),x≥0的區(qū)域內(nèi)存在垂直紙面向里的勻強磁場,磁感應強度大小為B。粒子源位于坐標為(﹣L,0)的A點,向坐標為(0,h)的Q點發(fā)射質(zhì)量為m,電荷量為q(q<0)的粒子,粒子重力忽略不計,速度大小可以調(diào)節(jié)。在坐標為(-L2,0)處放置一平行于y軸的擋板,擋板中點位于x軸上,長度略大于h2。已知粒子與擋板碰撞后,y方向的分速度不變,x方向的分速度等大反向。若粒子最終能返回A.5qBhh2+C.2qBhh2(多選)11.(2024秋?青島期末)如圖為用磁場力輸送導電液體的電磁泵模型,泵體相鄰棱長分別為L1、L2、L3。將泵體的上下表面接在電壓為U內(nèi)阻不計的電源上,理想電流表示數(shù)為I,泵體處在垂直于前表面向外的勻強磁場中,磁感應強度大小為B,導電液體的電阻率為ρ。下列說法正確的是()A.泵體上表面應接電源正極 B.電磁泵對導電液產(chǎn)生的推力大小為BIL3 C.泵體內(nèi)導電液體沿電流方向的電阻R=ρL1D.增大磁感應強度可以提高導電液體的流動速度(多選)12.(2024秋?順義區(qū)校級期末)陰極射線管中電子束由陰極沿x軸正方向射出,在熒光屏上出現(xiàn)如圖所示的一條亮線。要使該亮線向z軸正方向偏轉(zhuǎn),可以()A.加上y軸正方向的磁場 B.加上y軸負方向的磁場 C.加上z軸正方向的電場 D.加上z軸負方向的電場三.解答題(共3小題)13.(2024秋?惠山區(qū)校級期末)離子注入是芯片制造過程中一道重要的工序。如圖所示,在距O點為2r處的硅片下端與磁場中心O在同一水平線上,硅片長為l=233r。A處的離子無初速的“飄入”加速電場,經(jīng)電場加速后從P點沿半徑方向進入半徑為r的圓形勻強磁場區(qū)域,經(jīng)磁場偏轉(zhuǎn),最后打在豎直放置的硅片上。離子的質(zhì)量為m、電荷量為q(1)離子進入圓形勻強磁場區(qū)域時的速度大小v;(2)要求所有離子都打到硅片上,求磁感應強度B的取值范圍。14.(2024秋?武昌區(qū)期末)如圖所示,無限長的兩水平邊界間劃分了三個區(qū)域,中間的矩形ABCD區(qū)域分布有豎直方向的勻強電場(圖中未畫出),邊界AB的左側(cè)分布有垂直紙面向里的勻強磁場,邊界CD的右側(cè)分布有垂直紙面向外的勻強磁場。一質(zhì)量為m,電荷量為q(q>0)的粒子從P點豎直向下射入左側(cè)磁場,速度大小為v,經(jīng)磁場偏轉(zhuǎn),粒子第一次穿過邊界AB進入電場時,速度方向斜向上與邊界AB的夾角為θ,之后以垂直邊界CD的方向離開電場,并進入右側(cè)磁場運動。最終,粒子從P點正下方的Q點,沿豎直方向射出場區(qū)。已知,勻強電場的電場強度大小始終不變,但粒子每次離開電場時,電場的方向會反向,點P和A間距為d,上、下邊界間距為2d,sinθ=0.6,不計粒子的重力,忽略邊緣效應。求:(1)左側(cè)磁場的磁感應強度大小B1為多少?(2)AD的間距L的最大值為多少?(3)若邊界AB和CD的間距為13d,則右側(cè)磁場的磁感應強度大小B15.(2024秋?鎮(zhèn)海區(qū)校級期末)如圖所示的直角坐標系中,在x軸上方存在著垂直紙面向里、磁感應強度B=0.5T的勻強磁場,在x軸下方存在相對y軸對稱的平行于x軸、電場強度E=2509V/m的勻強電場,一質(zhì)量為m=1×10﹣21kg,電荷量q=2×10﹣19C的帶正電的粒子從P點(0,0.3m)以初速度v0=50m/s沿與y軸正方向角度θ=37°斜向左上方射出,粒子運動軌跡與y(1)該粒子在磁場中的軌道半徑r;(2)Q點的位置坐標;(3)粒子從P點出發(fā)至第三次打到x軸的位置坐標及總時間t。(取π=3)

2024-2025學年下學期高二物理教科版(2019)期中必刷??碱}之洛倫茲力參考答案與試題解析題號1234567答案BBBDCCC一.選擇題(共7小題)1.(2024秋?惠山區(qū)校級期末)石墨烯是一種由碳原子組成的單層二維蜂窩狀晶格結(jié)構(gòu)新材料,具有豐富的電學性能?,F(xiàn)設(shè)計一電路測量某二維石墨烯樣品的載流子(電子)濃度。如圖(a)所示,在長為a,寬為b的石墨烯表面加一垂直向里的勻強磁場,磁感應強度為B,電極1、3間通以恒定電流I,電極2、4間將產(chǎn)生電壓U。當I=1.60×10﹣3A時,測得U﹣B關(guān)系圖線如圖(b)所示,元電荷e=1.60×10﹣19C,則此樣品每平方米載流子數(shù)最接近()A.2.7×1015 B.3.7×1016 C.2.7×1019 D.3.7×1020【考點】霍爾效應與霍爾元件.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】B【分析】根據(jù)電流的微觀表達式得到載流子定向移動的速率,根據(jù)載流子受到的洛倫茲力和電場力平衡寫出霍爾電壓的表達式,結(jié)合圖像的斜率計算?!窘獯稹拷猓涸O(shè)樣品單位面積上含有的載流子為n,載流子定向移動的速率為v,則恒定電流大小I=nebv,霍爾電壓的大小為U,則evB=eUb,解得U=IneB,結(jié)合圖像有k=Ine=84故選:B?!军c評】能夠?qū)懗龌魻栯妷篣和磁場的磁感應強度之間的函數(shù)表達式是解題的基礎(chǔ)。2.(2024秋?大連期末)如圖為利用霍爾元件進行微小位移測量的實驗裝置。在兩塊完全相同、同極相對放置的磁體縫隙中放入金屬材料制成的霍爾元件,當霍爾元件處于中間位置時磁感應強度為0,霍爾電壓UH(霍爾元件前后兩表面的電勢差)也為0,將該點作為直角坐標系的原點。已知沿x軸方向磁感應強度大小B=kx(k為常數(shù),且k>0),霍爾元件中通以沿y軸正方向的恒定電流,當霍爾元件沿x軸移動時,即有霍爾電壓UH輸出,下列說法正確的是()A.霍爾元件有x軸正方向位移時,前表面的電勢高于后表面的電勢 B.UH的大小與元件在水平方向位移的大小成正比 C.霍爾元件的位移一定時,只增大y方向恒定電流的大小,UH的大小不變 D.霍爾元件的位移一定時,只增大元件垂直磁場方向的面積,UH的大小增大【考點】霍爾效應與霍爾元件.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】B【分析】根據(jù)左手定則判斷電子的偏轉(zhuǎn)方向,據(jù)此判斷電勢的高低;根據(jù)電子受到的洛倫茲力和電場力平衡,結(jié)合電流的微觀表達式寫出霍爾電壓的表達式,據(jù)此逐項分析即可?!窘獯稹拷猓篈、霍爾元件有x軸正方向位移時,通過霍爾元件的磁感線方向為水平向左,根據(jù)左手定則可知霍爾元件中的自由電子受安培力方向指向前表面,則前表面聚集電子,所以前表面的電勢低于后表面的電勢,故A錯誤;B、設(shè)霍爾元件中電子定向移動的速率為v,霍爾元件沿y軸方向的厚度為b,沿x軸方向的厚度為a,前后表面的距離為d,霍爾元件單位體積含有的自由電子數(shù)為n,則I=neadv,根據(jù)電子在霍爾元件中受洛倫茲力合電場力結(jié)合平衡條件有evB=eUHd,其中B=kx,整理可得UH=vdkx=IkxCD、根據(jù)霍爾電壓的表達式UH=Ikxnea可知,霍爾電壓的位移x一定時,只增大y方向恒定電流的大小,則霍爾電壓UH變大;若只增大元件垂直磁場方向的面積,即ad的乘積增大,可能a會增大,則霍爾電壓U故選:B。【點評】能夠根據(jù)電流的微觀表達式、電場力和洛倫茲力平衡條件寫出霍爾電壓的表達式是解題的關(guān)鍵。3.(2024秋?朝陽區(qū)校級期末)半導體內(nèi)導電的粒子—“載流子”有兩種:自由電子和空穴(空穴可視為能自由移動帶正電的粒子),以自由電子導電為主的半導體叫N型半導體,以空穴導電為主的半導體叫P型半導體。如圖為檢驗半導體材料的類型和對材料性能進行測試的原理圖,圖中一塊長為a、寬為b、厚為c的半導體樣品板放在沿y軸正方向的勻強磁場中,磁感應強度大小為B。當有大小為I、沿x軸正方向的恒定電流通過樣品板時,會在與z軸垂直的兩個側(cè)面之間產(chǎn)生霍爾電勢差UH,下列說法中正確的是()A.如果下表面電勢高,則該半導體為P型半導體 B.如果下表面電勢高,則該半導體為N型半導體 C.半導體樣品板的長度a越大,UH越大 D.半導體樣品板的寬度b越小,UH越大【考點】霍爾效應與霍爾元件.【專題】定性思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】B【分析】根據(jù)左手定則分析;根據(jù)載流子受電場力和洛倫茲力平衡結(jié)合電流的微觀表達式寫出霍爾電勢差的表達式分析?!窘獯稹拷猓篈B、根據(jù)左手點則可以判斷載流子向上表面偏轉(zhuǎn),如果上表面電勢高,則載流子為空穴,為P型半導體;如果下表面電勢高,則載流子為自由電子,為N型半導體,故A錯誤,B正確;CD、設(shè)載流子定向移動的速率為v,單位體積內(nèi)含有的載流子為n,則I=nebcv,當兩個側(cè)面的電勢差最大時,根據(jù)平衡條件有evB=eUHb,解得UH=BInec。所以UH大小與半導體樣品的長度a故選:B?!军c評】能夠?qū)懗龌魻栯妱莶畹谋磉_式是解題的關(guān)鍵。4.(2024秋?溫州期末)如圖所示,在xOy平面內(nèi),有一粒子源沿x正方向發(fā)射速率相等的質(zhì)量為m、電荷量為+q的帶電粒子。粒子射入一個半徑為R、中心位于原點O的圓形勻強磁場區(qū)域,磁場方向垂直xOy平面向里,磁感應強度的大小為B。已知沿x軸入射的粒子經(jīng)磁場偏轉(zhuǎn)后從P點射出。下列說法正確的是()A.粒子的速率v=B.沿x軸入射的粒子在磁場中的運動時間t=C.不同位置入射的粒子會從不同位置離開磁場 D.關(guān)于x軸對稱入射的兩個粒子從磁場中離開時的速度方向關(guān)于y軸對稱【考點】帶電粒子在弧形或圓形邊界磁場中的運動.【專題】定量思想;推理法;模型法;帶電粒子在磁場中的運動專題;推理論證能力.【答案】D【分析】沿x軸正方向射入的粒子經(jīng)圓形磁場區(qū)域偏轉(zhuǎn)后從P點射出,該粒子在磁場中的運動軌跡為14圓周,其軌跡半徑與磁場區(qū)域的半徑相等,符合磁聚焦模型的條件。根據(jù)洛倫茲力提供向心力求解粒子的速率;根據(jù)運動周期與軌跡圓心角求解該粒子在磁場中的運動時間;根據(jù)磁聚焦模型可知,粒子源沿x軸正方向射入的粒子經(jīng)圓形磁場區(qū)域偏轉(zhuǎn)后均從P點射出;根據(jù)幾何關(guān)系判斷關(guān)于x軸對稱入射的兩個粒子從磁場中離開時的速度方向關(guān)于y【解答】解:AB.已知沿x軸正方向射入的粒子經(jīng)圓形磁場區(qū)域偏轉(zhuǎn)后從P點射出,則該粒子在磁場中的運動軌跡為14圓周,其軌跡半徑r與磁場區(qū)域的半徑R相等,即r=R,軌跡的圓心角為90qvB=mv粒子在磁場中運動周期為:T=該粒子在磁場中的運動時間為:t=14C.粒子的軌道半徑與磁場區(qū)域的半徑相等,根據(jù)磁聚焦模型(如圖1所示)可知,粒子源沿x軸正方向射入的粒子經(jīng)圓形磁場區(qū)域偏轉(zhuǎn)后均從P點射出,故C錯誤;D.設(shè)關(guān)于x軸對稱入射的兩個粒子從a、b點進入磁場,從磁場中離開時的速度方向與y軸夾角分別為α、β,兩個粒子做圓周運動的圓心分別是O1、O2。如圖2所示,過P點做a、b點連線的垂線段,垂足為C點,由幾何關(guān)系可得∠O1PC=α,∠O2PC=β因:O1P=O2P=R,故:∠O1PC=∠O2PC,即:α=β即關(guān)于x軸對稱入射的兩個粒子從磁場中離開時的速度方向關(guān)于y軸對稱,故D正確。故選:D?!军c評】本題考查了帶電粒子在磁場中運動問題,粒子在磁場中做勻速圓周運動所需的向心力由洛倫茲力提供,根據(jù)牛頓第二定律,結(jié)合幾何關(guān)系解答。掌握磁聚焦與磁發(fā)散模型的特點。5.(2024秋?濟南期末)霍爾效應的應用非常廣泛。如圖所示,金屬片長度為a,寬度為b,厚度為h,水平放置于方向豎直向下,磁感應強度大小為B的勻強磁場中,金屬片左右兩端與電動勢為E的直流電源及滑動變阻器R構(gòu)成閉合回路,金屬片前后MN兩端接理想電壓表V。不計電源內(nèi)阻及金屬片電阻,閉合電鍵S,下列說法正確的是()A.金屬片的前端M的電勢低于后端N的電勢 B.僅減小磁感應強度B,電壓表示數(shù)增大 C.僅增大滑動變阻器R的阻值,電壓表示數(shù)減小 D.僅增大金屬片的長度a,電壓表示數(shù)減小【考點】霍爾效應與霍爾元件.【專題】信息給予題;定性思想;推理法;帶電粒子在復合場中的運動專題;理解能力.【答案】C【分析】A.根據(jù)電子定向移動的方向和左手定則判斷電子所受洛倫茲力的方向,然后判斷電勢的高低;B.當電路穩(wěn)定后,電子所受洛倫茲力與電場力平衡,根據(jù)平衡條件求解作答;CD.根據(jù)閉合電路的歐姆定律、電流的微觀表達式結(jié)合關(guān)系式U=bvB分析作答?!窘獯稹拷猓篈.閉合開關(guān),霍爾元件中電子的運動方向與電流的方向相反,根據(jù)左手定則可知電子向金屬片的后端N聚集,因此金屬片的前端M的電勢高于后端N的電勢,故A錯誤;B.當電路穩(wěn)定后,電子所受洛倫茲力與電場力平衡,根據(jù)平衡條件evB得U=bvB因此,僅減小磁感應強度B,電壓表示數(shù)減小,故B錯誤;C.根據(jù)閉合電路的歐姆定律I=ER根據(jù)電流的微觀表達式I=nevS可知,電子定向移動的速率減小,根據(jù)U=bvB可知,電壓表示數(shù)減小,故C正確;D.僅增大金屬片的長度a,電路中的電流不變,電子定向移動的速率不變,根據(jù)U=bvB可知,電壓表示數(shù)不變,故D錯誤。故選:C?!军c評】本題主要考查了霍爾效應,要明確霍爾元件的工作原理,掌握閉合電路的歐姆定律、電流的微觀表達式、洛倫茲力公式和電場力公式的運用。6.(2025?東湖區(qū)校級一模)如圖所示,圓形區(qū)域半徑為R,區(qū)域內(nèi)有一垂直紙面向外的勻強磁場,磁感應強度的大小為B=mvqR。位于磁場邊界最低點P處有一粒子源,同時將n個帶負電的粒子沿紙面內(nèi)各個方向均勻射入磁場區(qū)域,粒子質(zhì)量為m、電荷量大小為q、速率均為v。A、C為圓形區(qū)域水平直徑的兩個端點,足夠長的彈性擋板MN、M′N′與圓形區(qū)域在AA.所有粒子均與右側(cè)擋板碰撞,最終全部從D點離開磁場 B.粒子從P點出發(fā)到從D點離開磁場,運動的最長時間為t=C.粒子陸續(xù)與擋板碰撞過程中對擋板的平均作用力為F=D.粒子陸續(xù)從D點離開磁場過程中等效電流為I【考點】帶電粒子在直線邊界磁場中的運動;牛頓第二定律與向心力結(jié)合解決問題;帶電粒子在勻強磁場中的圓周運動.【專題】定量思想;推理法;帶電粒子在磁場中的運動專題;分析綜合能力.【答案】C【分析】由洛倫茲力提供向心力qvB=mv2r,解得粒子運動半徑,根據(jù)左手定則分析粒子的運動情況,作出粒子軌跡圖,根據(jù)時間公式解得BC,結(jié)合動量定理計算【解答】解:A.由洛倫茲力提供向心力,有qvB=mv可得r=R根據(jù)磁聚焦結(jié)論作出如圖所示的軌跡圖粒子在圓形磁場中射出后均能垂直打在左側(cè)擋板上,反彈后再次進入磁場并全部從D點離開磁場,故A錯誤;B.根據(jù)磁聚焦可以得出粒子在圓形磁場中運動的兩段圓弧圓心角之和為π,每個粒子在磁場中運動的時間均為t=這個時間是粒子從p點出發(fā)到從D點離開的最短時間,故B錯誤;C.所有粒子到達擋板的最短時間為t1=最長時間為t2=粒子與擋板碰撞過程中的作用時間為Δt=t2﹣t1對這n個粒子由動量定理可得FΔt=nmΔv解得F=故C正確;D.所有粒子從發(fā)出到達D點的最短時間為t'1=最長時間為t'2=因此粒子離開D點過程持續(xù)的時間為Δt'=t'2﹣t'1則等效電流為I=解得I=同時考慮到電荷離開D點時沿著不同方向,實際的電流會更小,故D錯誤。故選:C?!军c評】解決該題需要明確知道在求解時間最值問題,注意根據(jù)題意作出粒子的運動軌跡及洛倫茲力提供向心力的應用。7.(2024秋?惠山區(qū)校級期末)如圖所示,在磁感應強度大小為B、方向垂直于紙面向外的范圍足夠大的勻強磁場內(nèi),固定著傾角為θ的絕緣斜面,一個質(zhì)量為m、電荷量為﹣q的帶電小物塊以初速度v0沿斜面向上運動,小物塊與斜面間的動摩擦因數(shù)為μ。設(shè)滑動時電荷量不變,在小物塊上滑過程中,其速度v與時間t,加速度a與時間t和動能Ek與位移x的關(guān)系圖像,可能正確的是()A. B. C. D.【考點】帶電粒子在疊加場中做直線運動.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;分析綜合能力.【答案】C【分析】根據(jù)帶電粒子在復合場中運動的分析方法,明確帶電滑塊上滑,依據(jù)左手定則判定洛倫茲力方向,根據(jù)牛頓第二定律等知識分析,注意明確洛倫茲力與速度大小的關(guān)系?!窘獯稹拷猓阂罁?jù)左手定則判斷物塊受到的洛倫茲力方向垂直斜面向下,對沿斜面向上運動的小物塊受力分析,由牛頓第二定律可得:mgsinθ+μFN=maFN=mgcosθ+qvB聯(lián)立解得:a=gsinθ+μgcosθ+μqvB所以物體沿斜面向上做加速度減小的減速運動,速度越小,加速度越小,速度減小的越慢,加速度減小的越慢,在小物塊上滑過程中,當速度為零時加速度最小,但最小值不為零;A、速度—時間圖像的切線斜率表示加速度,故A錯誤;BC、物體加速度減小,且加速度減小的越來越慢,在小物塊上滑過程中,加速度減不到零,故C正確,B錯誤;D、動能Ek與位移x的關(guān)系圖像的斜率表示合力,根據(jù)以上分析可知,小物塊上滑過程中,合力為變力,則斜率會發(fā)生變化,故D錯誤。故選:C?!军c評】本題考查左手定則與牛頓第二定律的應用,掌握影響加速度的因素,理解倫茲力受到速率的影響。二.多選題(共5小題)(多選)8.(2024秋?大連期末)如圖所示,豎直平面內(nèi)有一半徑為R的圓形區(qū)域內(nèi)存在著垂直于該平面向里的勻強磁場,磁感應強度大小為B。一質(zhì)量為m、電荷量為q的帶電粒子(不計重力)以速度v0沿水平方向從P點射入磁場,其速度方向與半徑OP的夾角為45°,經(jīng)過一段時間后,粒子恰好從O點正下方的Q點射出磁場,下列說法正確的是()A.該粒子入射的速度大小為qBRmB.該粒子在磁場中運動的時間為3πRC.若只改變帶電粒子的入射方向,其在磁場中的運動時間可能變長 D.若帶電粒子的入射點向下平移R2,其射出磁場的位置在Q【考點】帶電粒子在弧形或圓形邊界磁場中的運動.【專題】定量思想;推理法;帶電粒子在磁場中的運動專題;推理論證能力.【答案】AC【分析】A.由牛頓第二定律結(jié)合幾何關(guān)系求得該粒子入射的速度大??;BC.根據(jù)圓心角與周期求得粒子所用時間,并判斷改變帶電粒子的入射方向,其在磁場中的運動時間變化;D.若帶電粒子的入射點位置變化,速度不變,半徑不變,其射出磁場的位置仍在Q點,由此作出判斷?!窘獯稹拷猓篈.粒子在磁場中運動軌跡如圖所示由幾何關(guān)系可知,粒子圓周運動的半徑為R,洛倫茲力提供向心力,由牛頓第二定律可得Bq解得v故A正確;BC.該粒子在磁場中偏轉(zhuǎn)的圓心角θ=3粒子的運動周期為T聯(lián)立解得t只改變粒子的入射方向,其對應得圓心角可能會增大,則粒子在磁場中運動得時間可能就邊長,故B錯誤,C正確;D.若帶電粒子的入射點向下平移R2,其圓周運動的半徑不變,其射出磁場的位置仍在Q點,故D故選:AC?!军c評】本題考查帶電粒子在勻強磁場中的運動,做題關(guān)鍵在于做出粒子運動軌跡圖,結(jié)合幾何關(guān)系和洛倫茲力提供向心力可求解,結(jié)合圓心角與周期可求得粒子運動的時間。(多選)9.(2024秋?青島期末)汽車的ABS是一種能夠防止車輪抱死的制動系統(tǒng),該系統(tǒng)的傳感器主要基于霍爾效應原理。如圖是傳感器元件的簡易圖,水平放置的元件處于豎直向下的勻強磁場中,長、寬、高分別是a、c、h。元件內(nèi)的電子定向移動形成恒定電流I,電流的方向向右,下列說法正確的是()A.電子定向移動的方向是從右到左 B.該元件前表面的電勢高于后表面的電勢 C.若增大寬度c,前后表面電勢差的絕對值增大 D.增大磁感應強度,前后表面電勢差的絕對值增大【考點】霍爾效應與霍爾元件.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】ABD【分析】A.根據(jù)電流方向和電子定向移動的方向關(guān)系進行判斷;B.根據(jù)左手定則結(jié)合載流子的情況進行判斷;CD.根據(jù)穩(wěn)定時滿足的方程推導電勢差的表達式,結(jié)合電流的微觀表達式進行分析判斷?!窘獯稹拷猓篈.因為元件中電流方向向右,電流是有電子的定向移動形成的,故電子定向移動的方向是從右向左,故A正確;B.根據(jù)左手定則,載流子是電子,則電子在洛倫茲力的作用下向后表面偏轉(zhuǎn),所以前表面電勢高于后表面電勢,故B正確;CD.穩(wěn)定時,滿足evB=eUc,即U=cvB,根據(jù)電流的微觀表達式I=neSv=nehcv,由于I恒定,可知cv不變,可知電勢差U不變,當B增大時U增大,故C錯誤,D故選:ABD?!军c評】考查霍爾效應,帶電粒子在磁場中的偏轉(zhuǎn)問題,熟悉霍爾效應的基本原理,會根據(jù)題意進行準確分析解答。(多選)10.(2024秋?濟南期末)如圖所示,在直角坐標系xOy平面內(nèi),x≥0的區(qū)域內(nèi)存在垂直紙面向里的勻強磁場,磁感應強度大小為B。粒子源位于坐標為(﹣L,0)的A點,向坐標為(0,h)的Q點發(fā)射質(zhì)量為m,電荷量為q(q<0)的粒子,粒子重力忽略不計,速度大小可以調(diào)節(jié)。在坐標為(-L2,0)處放置一平行于y軸的擋板,擋板中點位于x軸上,長度略大于h2。已知粒子與擋板碰撞后,y方向的分速度不變,xA.5qBhh2+C.2qBhh2【考點】帶電粒子在直線邊界磁場中的運動.【專題】定量思想;推理法;帶電粒子在磁場中的運動專題;推理論證能力.【答案】BCD【分析】由洛倫茲力提供向心力結(jié)合幾何關(guān)系求得粒子的速度大小作出判斷?!窘獯稹拷猓篈.當vm時,根據(jù)題意如圖所示由幾何關(guān)系可得,粒子運動半徑R=洛倫茲力提供向心力可得qvB=聯(lián)立解得vm故A錯誤;B.當粒子與擋板碰撞一次時由幾何關(guān)系可得,粒子運動半徑R=解得v1故B正確;C.當粒子與擋板碰撞二次時由幾何關(guān)系可得,粒子運動半徑R=解得v2故C正確;D.當粒子與擋板碰撞三次時由幾何關(guān)系可得,粒子運動半徑R=解得v3故D正確。故選:BCD?!军c評】對于帶電粒子在磁場中的運動情況分析,要正確分析粒子的受力情況,來判斷其運動情況。對于勻速圓周運動,要確定圓心位置,根據(jù)幾何關(guān)系求軌跡半徑,結(jié)合洛倫茲力提供向心力求解未知量。(多選)11.(2024秋?青島期末)如圖為用磁場力輸送導電液體的電磁泵模型,泵體相鄰棱長分別為L1、L2、L3。將泵體的上下表面接在電壓為U內(nèi)阻不計的電源上,理想電流表示數(shù)為I,泵體處在垂直于前表面向外的勻強磁場中,磁感應強度大小為B,導電液體的電阻率為ρ。下列說法正確的是()A.泵體上表面應接電源正極 B.電磁泵對導電液產(chǎn)生的推力大小為BIL3 C.泵體內(nèi)導電液體沿電流方向的電阻R=ρL1D.增大磁感應強度可以提高導電液體的流動速度【考點】霍爾效應與霍爾元件.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】BD【分析】A.根據(jù)左手定則判斷電流方向,再判斷極性;BD.根據(jù)安培力表達式進行分析解答;C.根據(jù)電阻定律進行分析解答?!窘獯稹拷猓篈.根據(jù)左手定則,要讓導電液在磁場中受到向右的安培力,則電流方向必須向上,故泵體上表面應接電源負極,下表面接正極,故A錯誤;B.電磁泵對導電液的推力等于安培力,根據(jù)安培力公式有F=BIL3,故B正確;C.根據(jù)電阻定律,泵體內(nèi)沿電流方向的電阻為R=ρL3L1D.根據(jù)安培力表達式可知,增大磁感應強度B可以增大安培力,更大的安培力可以提高導電液體的流動速度,故D正確。故選:BD?!军c評】考查左手定則的應用以及安培力的計算、電阻定律等,會根據(jù)題意進行準確分析解答。(多選)12.(2024秋?順義區(qū)校級期末)陰極射線管中電子束由陰極沿x軸正方向射出,在熒光屏上出現(xiàn)如圖所示的一條亮線。要使該亮線向z軸正方向偏轉(zhuǎn),可以()A.加上y軸正方向的磁場 B.加上y軸負方向的磁場 C.加上z軸正方向的電場 D.加上z軸負方向的電場【考點】左手定則判斷洛倫茲力的方向.【專題】定性思想;推理法;磁場磁場對電流的作用;理解能力.【答案】BD【分析】根據(jù)左手定則判斷分析加不同方向的磁場電子的偏轉(zhuǎn)方向?!窘獯稹拷猓篈.加上y軸正方向的磁場,根據(jù)左手定則可知,四指表示正電荷的運動方向,所以電子向z軸負方向偏轉(zhuǎn),故A錯誤;B.加上y軸負方向的磁場,根據(jù)左手定則可知,電子向z軸正方向偏轉(zhuǎn),故B正確;C.加上z軸正方向的電場,電子受到的電場力與電場方向相反,所以沿z軸負方向,電子向z軸負方向偏轉(zhuǎn),故C錯誤;D.加上z軸負方向的電場,電子受到的電場力與電場方向相反,所以沿z軸正方向,則電子向z軸正方向偏轉(zhuǎn),故D正確。故選:BD?!军c評】本題考查磁偏轉(zhuǎn)方向判斷的能力.由左手定則判斷洛倫茲力的方向是正確解題的關(guān)鍵。三.解答題(共3小題)13.(2024秋?惠山區(qū)校級期末)離子注入是芯片制造過程中一道重要的工序。如圖所示,在距O點為2r處的硅片下端與磁場中心O在同一水平線上,硅片長為l=233r。A處的離子無初速的“飄入”加速電場,經(jīng)電場加速后從P點沿半徑方向進入半徑為r的圓形勻強磁場區(qū)域,經(jīng)磁場偏轉(zhuǎn),最后打在豎直放置的硅片上。離子的質(zhì)量為m、電荷量為q(1)離子進入圓形勻強磁場區(qū)域時的速度大小v;(2)要求所有離子都打到硅片上,求磁感應強度B的取值范圍。【考點】帶電粒子由磁場進入電場中的運動;帶電粒子在弧形或圓形邊界磁場中的運動.【專題】定量思想;推理法;平行四邊形法則圖解法專題;帶電粒子在電場中的運動專題;分析綜合能力.【答案】(1)離子進入圓形勻強磁場區(qū)域時的速度大小v為2qU(2)要求所有離子都打到硅片上,磁感應強度B的取值范圍為2qUm【分析】(1)根據(jù)動能定理求解離子進入圓形勻強磁場區(qū)域時的速度大??;(2)畫出打在粒子打在硅片上、下端的軌跡圖像,根據(jù)幾何知識求解粒子做圓周運動的半徑,根據(jù)牛頓第二定律求解磁感應強度的大小,最后綜合表示磁感應強度的取值范圍?!窘獯稹拷猓海?)離子通過加速電場,由動能定理可知qU=變形得到v=(2)根據(jù)題意,畫出離子在磁場中運動的軌跡,如圖所示:離子打在硅片上端時,設(shè)磁感應強度為B1,∠BOD=α,由幾何關(guān)系知道tanα=α=30°∠QOB=60°∠MOP=120°∠COP=60°∠OCP=30°設(shè)離子的軌跡半徑為Rtan30R=由牛頓第二定律有qvB解得B1離子打在硅片下端時,設(shè)磁感應強度為B0,由幾何關(guān)系知道,離子的軌跡半徑r'=r,由牛頓第二定律有qvB0=從而解得B0磁感應強度的取值范圍2qUm答:(1)離子進入圓形勻強磁場區(qū)域時的速度大小v為2qU(2)要求所有離子都打到硅片上,磁感應強度B的取值范圍為2qUm【點評】本題考查帶電粒子在磁場中的運動,要求學生能根據(jù)題意作出帶電粒子的軌跡圖,能熟練應用動能定理求解粒子加速后的速度、幾何知識求解軌道半徑、牛頓第二定律求解速度和磁感應強度。14.(2024秋?武昌區(qū)期末)如圖所示,無限長的兩水平邊界間劃分了三個區(qū)域,中間的矩形ABCD區(qū)域分布有豎直方向的勻強電場(圖中未畫出),邊界AB的左側(cè)分布有垂直紙面向里的勻強磁場,邊界CD的右側(cè)分布有垂直紙面向外的勻強磁場。一質(zhì)量為m,電荷量為q(q>0)的粒子從P點豎直向下射入左側(cè)磁場,速度大小為v,經(jīng)磁場偏轉(zhuǎn),粒子第一次穿過邊界AB進入電場時,速度方向斜向上與邊界AB的夾角為θ,之后以垂直邊界CD的方向離開電場,并進入右側(cè)磁場運動。最終,粒子從P點正下方的Q點,沿豎直方向射出場區(qū)。已知,勻強電場的電場強度大小始終不變,但粒子每次離開電場時,電場的方向會反向,點P和A間距為d,上、下邊界間距為2d,sinθ=0.6,不計粒子的重力,忽略邊緣效應。求:(1)左側(cè)磁場的磁感應強度大小B1為多少?(2)AD的間距L的最大值為多少?(3)若邊界AB和CD的間距為13d,則右側(cè)磁場的磁感應強度大小B【考點】帶電粒子在電場和磁場中的往復運動.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】(1)左側(cè)磁場的磁感應強度大小B1為9mv(2)AD的間距L的最大值為12(3)右側(cè)磁場的磁感應強度大小B2的最大值為27mv【分析】(1)粒子在左側(cè)磁場中做勻速圓周運動,根據(jù)幾何關(guān)系求得運動軌跡半徑,根據(jù)洛倫茲力提供向心力求解磁感應強度大??;(2)粒子在電場中做類斜拋運動,將運動按水平方向與豎直方向分解。要使AD的間距L最大,粒子恰好在D點垂直CD邊界進入右邊磁場。根據(jù)運動學公式求解AD的間距L的最大值;(3)粒子在右側(cè)磁場中做勻速圓周運動,要使磁感應強度最大,則運動半徑最小。作出粒子周期性運動的運動軌跡圖,求出粒子在電場中側(cè)移量,根據(jù)幾何關(guān)系求得粒子運動一個周期在豎直方向上下移的距離,最終粒子從P點正下方的Q點沿豎直方向射出場區(qū),根據(jù)滿足的條件求得運動半徑的最小值,由洛倫茲力提供向心力求解磁感應強度的最大值。【解答】解:(1)粒子在左側(cè)磁場中做勻速圓周運動,設(shè)軌道半徑為R1,如下圖所示:已知:sinθ=0.6,則cosθ=0.8根據(jù)幾何關(guān)系得:R1+R1cosθ=d解得:R根據(jù)洛倫茲力提供向心力得:qvB解得:B(2)粒子在電場中做類斜拋運動,水平方向分速度大小為vx=vsinθ,豎直方向分速度大小為vy=vcosθ。要使AD的間距L最大,粒子恰好在D點垂直CD邊界進入右邊磁場。設(shè)粒子在電場中運動時間為t,則有:在豎直方向上有:R1sinθ在水平方向上有:x即AD的間距L的最大值為12(3)粒子在右側(cè)磁場中做勻速圓周運動,設(shè)其軌道半徑為R2,要使B2最大,則R2最小。粒子做周期性運動的運動軌跡如下圖所示,由P點到M點為一個運動周期。當邊界AB和CD的間距為13d時,設(shè)粒子在電場中運動時間為t在水平方向上有:13d=vxt1,解得:在豎直方向上有:Δy=粒子運動一個周期在豎直方向上下移的距離(即圖中的PM的長度)為:h=2R1sinθ﹣2Δy+2R2最終粒子從P點正下方的Q點沿豎直方向射出場區(qū),需滿足:h≥R1nh=2d,n=1、2、3……聯(lián)立可得:R2=解得:n=3時,R2取最小值,且最小值為:Rmin=由洛倫茲力提供向心力得:q解得磁感應強度大小B2的最大值為:B答:(1)左側(cè)磁場的磁感應強度大小B1為9mv(2)AD的間距L的最大值為12(3)右側(cè)磁場的磁感應強度大小B2的最大值為27mv【點評】本題考查了帶電粒子在電磁場中的運動問題,解題的關(guān)鍵是能夠根據(jù)題意作出粒子的運動軌跡,粒子運動具有周期性,根據(jù)周期性確定運動的幾何條件。15.(2024秋?鎮(zhèn)海區(qū)校級期末)如圖所示的直角坐標系中,在x軸上方存在著垂直紙面向里、磁感應強度B=0.5T的勻強磁場,在x軸下方存在相對y軸對稱的平行于x軸、電場強度E=2509V/m的勻強電場,一質(zhì)量為m=1×10﹣21kg,電荷量q=2×10﹣19C的帶正電的粒子從P點(0,0.3m)以初速度v0=50m/s沿與y軸正方向角度θ=37°斜向左上方射出,粒子運動軌跡與(1)該粒子在磁場中的軌道半徑r;(2)Q點的位置坐標;(3)粒子從P點出發(fā)至第三次打到x軸的位置坐標及總時間t。(取π=3)【考點】帶電粒子由磁場進入電場中的運動;帶電粒子由電場進入磁場中的運動.【專題】定量思想;推理法;帶電粒子在復合場中的運動專題;推理論證能力.【答案】(1)該粒子在磁場中的軌道半徑r為0.5m;(2)Q點的位置坐標為(0,﹣0.9m);(3)粒子從P點出發(fā)至第三次打到x軸的位置坐標為(﹣1m,0),總時間t為4496000【分析】(1)該粒子在磁場中做勻速圓周運動,由洛倫茲力提供向心力求解運動軌跡半徑;(2)根據(jù)幾何關(guān)系畫作出粒子的運動軌跡。粒子在電場中到達Q點的過程做類平拋運動,將運動分解處理。根據(jù)牛頓第二定律與運動學公式解答;(3)根據(jù)題意求得粒子打到擋板反彈后瞬間水平分速度大小,反彈后粒子沿+y方向以速度v0做勻速直線運動,沿x軸方向做對稱的勻加速與勻加速直線運動,可知粒子經(jīng)過原點O進入第三象限的磁場,求得到達原點O的速度大小與方向。由洛倫茲力提供向心力求得粒子再次在磁場中的運動半徑。由幾何關(guān)系求得粒子第三次打到x軸的位置坐標。根據(jù)運動周期與圓心角求解粒子在磁場中的運動時間,粒子在第四象限運動時間與在第三象限運動時間相等,進而求得粒子從P點出發(fā)至第三次打到x軸的總時間?!窘獯稹拷猓海?)該粒子在磁場中做勻速圓周運動,由洛倫茲力提供向心力得:qv0B=解得:r=0.5m(2)已知OP=0.3m,因OPcos(90°-θ)=0.3cos(90°-37°)m=粒子垂直于x軸進入第三象限的電場,在電場中到達Q點的過程做類平拋運動,設(shè)OQ的距離為y1,則有:y1=v0t1r+rcos37°=解得:t1=9500s,y則Q點的位置坐標為(0,﹣0.9m)(3)粒子到達Q點時水平分速度大小為:vx1=qEmt1,解得:由題意可得粒子打到擋板反彈后瞬間水平分速度大小為:vx2=12vx1,解得:vx2反彈后粒子沿+y方向以速度v0做勻速直線運動,沿x軸方向做對稱的勻加速與勻加速直線運動,可知粒子經(jīng)過原點O進入第三象限的磁場,到達原點O的速度大小為:v2=v02+vx2速度v2的方向與﹣x方向的夾角β滿足:tanβ=vx2v0設(shè)粒子再次在磁場中的運動半徑為R,由洛倫茲力提供向心力得:qv2B=mv22粒子再次在磁場中的運動軌跡如下圖所示。由幾何關(guān)系可得:OM=2Rsinβ,解得:OM=1m可知粒子第三次打到x軸的位置坐標為:(﹣1m,0)粒子第一次在磁場中的運動時間為:t2=解得:t2=粒子第二次在磁場中的運動時間為:t3=解得:t2=粒子在第四象限運動時間與在第三象限運動時間相等,均為t1=9500s,粒子從Pt=2t1+t2+t3解得:t=答:(1)該粒子在磁場中的軌道半徑r為0.5m;(2)Q點的位置坐標為(0,﹣0.9m);(3)粒子從P點出發(fā)至第三次打到x軸的位置坐標為(﹣1m,0),總時間t為4496000【點評】本題考查了帶電粒子在電磁場中的運動問題,粒子在電場中做類平拋運動時,將運動分解處理。粒子在磁場中做勻速圓周運動時,根據(jù)洛倫茲力提供向心力,結(jié)合幾何解答。

考點卡片1.牛頓第二定律與向心力結(jié)合解決問題【知識點的認識】圓周運動的過程符合牛頓第二定律,表達式Fn=man=mω2r=mv2r=【命題方向】我國著名體操運動員童飛,首次在單杠項目中完成了“單臂大回環(huán)”:用一只手抓住單杠,以單杠為軸做豎直面上的圓周運動.假設(shè)童飛的質(zhì)量為55kg,為完成這一動作,童飛在通過最低點時的向心加速度至少是4g,那么在完成“單臂大回環(huán)”的過程中,童飛的單臂至少要能夠承受多大的力.分析:運動員在最低點時處于超重狀態(tài),由單杠對人拉力與重力的合力提供向心力,根據(jù)牛頓第二定律求解.解答:運動員在最低點時處于超重狀態(tài),設(shè)運動員手臂的拉力為F,由牛頓第二定律可得:F心=ma心則得:F心=2200N又F心=F﹣mg得:F=F心+mg=2200+55×10=2750N答:童飛的單臂至少要能夠承受2750N的力.點評:解答本題的關(guān)鍵是分析向心力的來源,建立模型,運用牛頓第二定律求解.【解題思路點撥】圓周運動中的動力學問題分析(1)向心力的確定①確定圓周運動的軌道所在的平面及圓心的位置.②分析物體的受力情況,找出所有的力沿半徑方向指向圓心的合力,該力就是向心力.(2)向心力的來源向心力是按力的作用效果命名的,可以是重力、彈力、摩擦力等各種力,也可以是幾個力的合力或某個力的分力,因此在受力分析中要避免再另外添加向心力.(3)解決圓周運動問題步驟①審清題意,確定研究對象;②分析物體的運動情況,即物體的線速度、角速度、周期、軌道平面、圓心、半徑等;③分析物體的受力情況,畫出受力示意圖,確定向心力的來源;④根據(jù)牛頓運動定律及向心力公式列方程.2.左手定則判斷洛倫茲力的方向【知識點的認識】1.左手定則的內(nèi)容:伸開左手,使拇指與其余四個手指垂直,并且都與手掌在同一個平面內(nèi);讓磁感線從掌心垂直進入,并使四指指向正電荷運動的方向,這時拇指所指的方向就是運動的正電荷在磁場中所受洛倫茲力的方向(如下圖)。負電荷受力的方向與正電荷受力的方向相反。2.洛倫茲力的方向垂直于磁場方向和電荷運動方向決定的平面?!久}方向】如圖所示,重力不計的帶正電粒子水平向右進入勻強磁場,對該帶電粒子進入磁場后的運動情況,下列判斷正確的是()A、粒子向上偏轉(zhuǎn)B、粒子向下偏轉(zhuǎn)C、粒子不偏轉(zhuǎn)D、粒子很快停止運動分析:帶電粒子在磁場中運動,才受到洛倫茲力作用而發(fā)生偏轉(zhuǎn).由左手定則可確定洛倫茲力的方向,再根據(jù)運動與力的關(guān)系可確定運動軌跡.解答:帶正電粒子垂直進入勻強磁場中,受到垂直向上的洛倫茲力作用,從而使粒子向上偏轉(zhuǎn)。故選:A。點評:電荷在磁場中靜止,則一定沒有磁場力,而電荷在磁場中運動,才可能有洛倫茲力,當運動方向與磁場垂直時,洛倫茲力最大.【解題思路點撥】洛倫茲力的方向(1)f⊥B,f⊥v,f垂直于B、v共同確定的平面,但B與v不一定垂直。(2)洛倫茲力的方向隨電荷運動方向的變化而變化。但無論怎么變化,洛倫茲力都與運動方向垂直,故洛倫茲力永不做功,它只改變電荷的運動方向,不改變電荷的速度大小。3.帶電粒子在勻強磁場中的圓周運動【知識點的認識】帶電粒子在勻強磁場中的運動1.若v∥B,帶電粒子不受洛倫茲力,在勻強磁場中做勻速直線運動.2.若v⊥B,帶電粒子僅受洛倫茲力作用,在垂直于磁感線的平面內(nèi)以入射速度v做勻速圓周運動.3.半徑和周期公式:(v⊥B)【命題方向】如圖所示,MN是勻強磁場中的一塊薄金屬板,帶電粒子(不計重力)在勻強磁場中運動并穿過金屬板,虛線表示其運動軌跡,由圖知()A、粒子帶負電B、粒子運動方向是abcdeC、粒子運動方向是edcbaD、粒子在上半周所用時間比下半周所用時間長分析:由半徑的變化可知粒子運動方向;由軌跡偏轉(zhuǎn)方向可知粒子的受力方向,則由左手定則可判斷粒子的運動方向,由圓周對應的圓心角及周期公式可知時間關(guān)系。解答:ABC、帶電粒子穿過金屬板后速度減小,由r=mvqB軌跡半徑應減小,故可知粒子運動方向是粒子所受的洛倫茲力均指向圓心,故粒子應是由下方進入,故粒子運動方向為edcba,則粒子應帶負電,故B錯誤,AC正確;D、由T=2πmqB可知,粒子運動的周期和速度無關(guān),而上下均為半圓,故所對的圓心角相同,故粒子的運動時間均為T故選:AC。點評:本題應注意觀察圖形,圖形中隱含的速度關(guān)系是解決本題的關(guān)鍵,明確了速度關(guān)系即可由左手定則及圓的性質(zhì)求解?!窘忸}方法點撥】帶電粒子在勻強磁場中的勻速圓周運動的分析方法.4.帶電粒子在直線邊界磁場中的運動【知識點的認識】1.帶電粒子在直線邊界磁場中的運動的兩種情形(1)直線邊界(2)平行邊界2.帶電粒子在有界磁場中的常用幾何關(guān)系(1)四個點:分別是入射點、出射點、軌跡圓心和入射速度直線與出射速度直線的交點.(2)三個角:速度偏轉(zhuǎn)角、圓心角、弦切角,其中偏轉(zhuǎn)角等于圓心角,也等于弦切角的2倍.3.常見的解題思路(1)圓心的確定①由兩點和兩線確定圓心,畫出帶電粒子在勻強磁場中的運動軌跡.確定帶電粒子運動軌跡上的兩個特殊點(一般是射入和射出磁場時的兩點),過這兩點作帶電粒子運動方向的垂線(這兩垂線即為粒子在這兩點所受洛倫茲力的方向),則兩垂線的交點就是圓心,如圖(a)所示.②若只已知過其中一個點的粒子運動方向,則除過已知運動方向的該點作垂線外,還要將這兩點相連作弦,再作弦的中垂線,兩垂線交點就是圓心,如圖(b)所示.③若只已知一個點及運動方向,也知另外某時刻的速度方向,但不確定該速度方向所在的點,如圖(c)所示,此時要將其中一速度的延長線與另一速度的反向延長線相交成一角(∠PAM),畫出該角的角平分線,它與已知點的速度的垂線交于一點O,該點就是圓心.(2)半徑的確定方法一:由物理方程求:半徑R=mv方法二:由幾何方程求:一般由數(shù)學知識(勾股定理、三角函數(shù)等)計算來確定.(3)時間的確定由t=θ2πT確定通過某段圓弧所用的時間,其中【命題方向】如圖所示,粒子a、b以相同的動能同時從O點射入寬度為d的有界勻強磁場,兩粒子的入射方向與磁場邊界的夾角分別為30°和60°,且同時到達P點,OP垂直于磁場邊界。a、b兩粒子的質(zhì)量之比為()A、1:2B、2:1C、3:4D、4:3分析:求解本題的關(guān)鍵是畫出來粒子的軌跡圖,并確定圓心、求出半徑和圓心角,然后根據(jù)動能相等的條件以及相等的運動時間并結(jié)合圓周運動公式聯(lián)立即可求解。解答:根據(jù)題意畫出a、b粒子的軌跡如圖所示,則a、b粒子的圓心分別是O1和O2,設(shè)磁場寬度為d,由圖可知,粒子a的半徑ra=d2sin60°=d3a粒子軌跡長度為sa=2×60b粒子的軌跡長度為sb=2×30又有:va=sa解得:v由12mava2=12故選:C。點評:求解有關(guān)帶電粒子在有界磁場中的運動問題的關(guān)鍵是畫出軌跡圖,并根據(jù)幾何知識確定圓心求出半徑和圓心角,再結(jié)合圓周運動的有關(guān)規(guī)律聯(lián)立即可求解。【解題思路點撥】由于帶電粒子往往是在有界磁場中運動,粒子在磁場中只運動一段圓弧就飛出磁場邊界,其軌跡不是完整的圓,因此,此類問題往往要根據(jù)帶電粒子運動的軌跡作相關(guān)圖去尋找?guī)缀侮P(guān)系,分析臨界條件,然后應用數(shù)學知識和相應物理規(guī)律分析求解.(1)兩種思路①以定理、定律為依據(jù),首先求出所研究問題的一般規(guī)律和一般解的形式,然后再分析、討論臨界條件下的特殊規(guī)律和特殊解;②直接分析、討論臨界狀態(tài),找出臨界條件,從而通過臨界條件求出臨界值.(2)兩種方法物理方法:①利用臨界條件求極值;②利用問題的邊界條件求極值;③利用矢量圖求極值.數(shù)學方法:①利用三角函數(shù)求極值;②利用二次方程的判別式求極值;③利用不等式的性質(zhì)求極值;④利用圖象法等.(3)從關(guān)鍵詞中找突破口:許多臨界問題,題干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脫離”等詞語對臨界狀態(tài)給以暗示.審題時,一定要抓住這些特定的詞語挖掘其隱藏的規(guī)律,找出臨界條件.5.帶電粒子在弧形或圓形邊界磁場中的運動【知識點的認知】1.圓形邊界:如圖所示,帶電粒子從某點沿圓形磁場的半徑方向人射,從另一點射出磁場時速度的反向延長線過磁場的圓心,即沿徑向射入必沿徑向射出。2.幾個與角有關(guān)的物理量如圖所示,粒子做勻速圓周運動時,φ為粒子速度的偏向角,粒子與圓心的連線轉(zhuǎn)過的角度α為回旋角(或圓心角),AB弦與切線的夾角θ為弦切角,它們的關(guān)系為φ=α=2θ,θ與相鄰的弦切角θ'互補,即θ+θ'=180°。3.如何確定“圓心角與時間”①速度的偏向角φ=圓弧所對應的圓心角(回旋角)α=2倍的弦切角θ②時間的計算方法.方法一:由圓心角求,t=θ2π?T;方法二:由弧長求,【命題方向】如圖所示,虛線所圍區(qū)域內(nèi)有方向垂直紙面向里的勻強磁場,磁感應強度為B.一束電子沿圓形區(qū)域的直徑方向以速度v射入磁場,電子束經(jīng)過磁場區(qū)后,其運動的方向與原入射方向成θ角。設(shè)電子質(zhì)量為m,電荷量為e,不計電子之間的相互作用力及所受的重力。求:(1)電子在磁場中運動軌跡的半徑R;(2)電子在磁場中運動的時間t;(3)圓形磁場區(qū)域的半徑r。分析:電子在磁場中受洛倫茲力作用,電子在洛倫茲力作用下做勻速圓周運動,洛倫茲力提供向心力,可以求出電子運動的半徑,畫出電子運動軌跡,根據(jù)幾何關(guān)系可以求得電子在磁場中的運動的時間和圓形磁場區(qū)域的半徑。解答:(1)電子在磁場中受到的洛倫茲力提供電子做勻速圓周運動的向心力即:qvB=由此可得電子做圓周運動的半徑R=(2)如圖根據(jù)幾何關(guān)系,可以知道電子在磁場中做圓周運動對圓心轉(zhuǎn)過的角度α=θ則電子在磁場中運動的時間:t=(3)由題意知,由圖根據(jù)幾何關(guān)系知:tanθ∴r答:(1)電子在磁場中運動軌跡的半徑R=mv(2)電子在磁場中運動的時間t=mθ(3)圓形磁場區(qū)域的半徑r=mv點評:熟悉電子在磁場中做勻速圓周運動由洛倫茲力提供向心力,據(jù)此列式求出半徑和周期間的表達式,能正確作出電子做圓周運動的半徑?!窘忸}思路點撥】由于帶電粒子往往是在有界磁場中運動,粒子在磁場中只運動一段圓弧就飛出磁場邊界,其軌跡不是完整的圓,因此,此類問題往往要根據(jù)帶電粒子運動的軌跡作相關(guān)圖去尋找?guī)缀侮P(guān)系,分析臨界條件,然后應用數(shù)學知識和相應物理規(guī)律分析求解.(1)兩種思路①以定理、定律為依據(jù),首先求出所研究問題的一般規(guī)律和一般解的形式,然后再分析、討論臨界條件下的特殊規(guī)律和特殊解;②直接分析、討論臨界狀態(tài),找出臨界條件,從而通過臨界條件求出臨界值.(2)兩種方法物理方法:①利用臨界條件求極值;②利用問題的邊界條件求極值;③利用矢量圖求極值.數(shù)學方法:①利用三角函數(shù)求極值;②利用二次方程的判別式求極值;③利用不等式的性質(zhì)求極值;④利用圖象法等.(3)從關(guān)鍵詞中找突破口:許多臨界問題,題干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脫離”等詞語對臨界狀態(tài)給以暗示.審題時,一定要抓住這些特定的詞語挖掘其隱藏的規(guī)律,找出臨界條件.6.帶電粒子在疊加場中做直線運動【知識點的認識】1.疊加場是指一個區(qū)域可能同時含有重力場、電場和磁場中的兩個或三個。但本考點涉及的題目必須包含磁場。2.帶電粒子在疊加場中做直線運動有兩種情況(不考慮平行于電場和磁場射入)(1)不計粒子重力,則必有洛倫茲力等于電場力,Bqv=qE。(2)考慮粒子重力,則必有電場力與重力的合力等于洛倫茲力。也就是說只要粒子在含有磁場的疊加場中做直線運動,一定是勻速直線運動。因為如果是變速運動,則洛倫茲力也會變化,合力與速度方向不再一條直線上,粒子就不可能再做直線運動?!久}方向】如圖所示,某空間存在正交的勻強磁場和勻強電場,電場方向水平向右,磁場方向垂直紙面向里,一帶負電微粒由a點以一定初速度進入電磁場,剛好能沿直線ab斜向上運動,則下列說法正確的是()A、微粒的動能一定增加B、微粒的動能一定減少C、微粒的電勢能一定減少D、微粒的機械能一定增加分析:對帶電粒子進行受力分析,受到豎直向下的重力,水平向左的電場力和垂直于虛線向右上的洛倫茲力,由于帶電粒子做直線運動,可判斷粒子合外力為零,再根據(jù)各力的做功情況,即可判斷各選項的正誤.解答:根據(jù)做直線運動的條件和受力情況(如圖所示)可知,粒子做勻速直線運動,所以粒子的動能保持不變,選項AB錯誤;再由a沿直線運動到b的過場中,電場力做正功,電勢能減小,選項C正確;重力做負功,重力勢能增加,選項D正確。故選:CD。點評:帶電粒子在重力場、電場、磁場的復合場中,只要是做直線運動,一定是勻速直線運動(v與B不平行).若速度是變的,洛倫茲力會變,合力就是變的,合力與速度不在一條直線上,帶電體就會做曲線運動.【解題思路點撥】1.疊加場中三中場的比較2.帶電粒子在疊加場中運動的分析方法7.帶電粒子由磁場進入電場中的運動【知識點的認識】1.帶電粒子在電場、磁場組合場中的運動是指粒子從電場到磁場,或從磁場到電場的運動。通常按時間的先后順序分成若干個小過程,在每一運動過程中從粒子的受力性質(zhì)、受力方向和速度方向的關(guān)系入手,分析運動性質(zhì)。2.一般的分析思路為:(1)劃分過程:將粒子運動的過程劃分為幾個不同的階段,對不同的階段選取相應的規(guī)律處理。(2)找關(guān)鍵:確定帶電粒子在場區(qū)邊界的速度(包括大小和方向)是解決該類問題的關(guān)鍵,(3)畫運動軌跡:根據(jù)受力分析和運動分析大致畫出粒子的運動軌跡圖,有利于形象、直觀地解決問題。3.本考點旨在針對粒子從磁場進入電場的情況?!久}方向】如圖所示,一個質(zhì)量為m=2.0×10﹣11kg,電荷量q=+1.0×10﹣5C的帶電微粒(重力忽略不計),從靜止開始經(jīng)U1=100V電場加速后,水平進入兩平行金屬板間的偏轉(zhuǎn)電場,偏轉(zhuǎn)電場的電壓U2=50V.金屬板長L=20cm,兩板間距d=53cm(1)微粒進入偏轉(zhuǎn)電場時的速度v0大小;(2)微粒射出偏轉(zhuǎn)電場時的偏轉(zhuǎn)角θ;(3)若該勻強磁場的寬度D=10cm,為使微粒不會從磁場右邊射出,則該勻強磁場的磁感應強度B至少多大?分析:(1)粒子在加速電場中,電場力做功,由動能定理求出速度v0。(2)粒子進入偏轉(zhuǎn)電場后,做類平拋運動,運用運動的合成與分解求出偏轉(zhuǎn)角。(3)粒子進入磁場后,做勻速圓周運動,結(jié)合條件,畫出軌跡,由幾何知識求半徑,再求B。解答:(1)粒子在加速電場中運動過程,由動能定理,得qU1=解得,v0=2qU(2)粒子在偏轉(zhuǎn)電場中做類平拋運動,則有加速度a=t=Lv0,v則tanθ=將上述各式代入得到tanθ=θ=30°(3)粒子進入磁場后做勻速圓周運動,速度大小為v=畫出軌跡如圖,根據(jù)幾何知識,得D=r+rsinθr=又由qvB=mv解得B=代入數(shù)據(jù)解得,B=0.346T答:(1)微粒進入偏轉(zhuǎn)電場時的速度v0大小1×104m/s;(2)微粒射出偏轉(zhuǎn)電場時的偏轉(zhuǎn)角θ=30°;(3)為使微粒不會從磁場右邊射出,該勻強磁場的磁感應強度B至少為0.346T。點評:本題是帶電粒子在組合場中運動的問題,關(guān)鍵是分析粒子的受力情況和運動情況,用力學的方法處理?!窘忸}思路點撥】解決帶電粒子在組合場中的運動問題的方法8.帶電粒子由電場進入磁場中的運動【知識點的認識】1.帶電粒子在電場、磁場組合場中的運動是指粒子從電場到磁場,或從磁場到電場的運動。通常按時間的先后順序分成若干個小過程,在每一運動過程中從粒子的受力性質(zhì)、受力方向和速度方向的關(guān)系入手,分析運動性質(zhì)。2.一般的分析思路為:(1)劃分過程:將粒子運動的過程劃分為幾個不同的階段,對不同的階段選取相應的規(guī)律處理。(2)找關(guān)鍵:確定帶電粒子在場區(qū)邊界的速度(包括大小和方向)是解決該類問題的關(guān)鍵,(3)畫運動軌跡:根據(jù)受力分析和運動分析大致畫出粒子的運動軌跡圖,有利于形象、直觀地解決問題。3.本考點旨在針對粒子從電場進入磁場的情況?!久}方向】如圖所示,直角坐標系中的第Ⅰ象限中存在沿y軸負方向的勻強電場,在第Ⅱ象限中存在垂直紙面向外的勻強磁場。一電量為q、質(zhì)量為m的帶正電的粒子,在﹣x軸上的點a以速率v0,方向和﹣x軸方向成60°射入磁場,然后經(jīng)過y軸上y=L處的b點垂直于y軸方向進入電場,并經(jīng)過x軸上x=2L處的c點。不計重力。求:(1)磁感應強度B的大??;(2)電場強度E的大?。唬?)粒子在磁場和電場中的運動時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論