新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷_第1頁
新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷_第2頁
新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷_第3頁
新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷_第4頁
新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆兵地2025屆高三下學期第一次階段檢測試題數(shù)學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖像大致為()A. B.C. D.2.若集合,則()A. B.C. D.3.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數(shù)的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④4.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.5.當時,函數(shù)的圖象大致是()A. B.C. D.6.等比數(shù)列若則()A.±6 B.6 C.-6 D.7.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.8.下列結論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.09.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.10.3本不同的語文書,2本不同的數(shù)學書,從中任意取出2本,取出的書恰好都是數(shù)學書的概率是()A. B. C. D.11.若時,,則的取值范圍為()A. B. C. D.12.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.14.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉一周,則所形成的幾何體的體積為.15.已知以x±2y=0為漸近線的雙曲線經過點,則該雙曲線的標準方程為________.16.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.18.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),,總有成立.19.(12分)已知函數(shù).(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.21.(12分)已知函數(shù).(1)若是函數(shù)的極值點,求的單調區(qū)間;(2)當時,證明:22.(10分)已知函數(shù),.(1)當時,求函數(shù)的值域;(2),,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.2.A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.3.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質的應用,三角函數(shù)的變換規(guī)則,屬于基礎題.4.B【解析】

先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.5.B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.6.B【解析】

根據(jù)等比中項性質代入可得解,由等比數(shù)列項的性質確定值即可.【詳解】由等比數(shù)列中等比中項性質可知,,所以,而由等比數(shù)列性質可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.7.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.8.B【解析】

根據(jù)等差數(shù)列的定義,線面關系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質,考查運算能力和推理能力,屬于中檔題.9.C【解析】

根據(jù)總有恒成立可構造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設,則的最大值小于等于0.又,若則,在上單調遞增,無最大值.若,則當時,,在上單調遞減,當時,,在上單調遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構造函數(shù)求解的最大值.屬于難題.10.D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.11.D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.12.A【解析】

本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.二、填空題:本題共4小題,每小題5分,共20分。13.-【解析】試題分析:根據(jù)題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據(jù)余弦定理得考點:余弦定理及等比數(shù)列的定義.14.【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉體的組合體.15.【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.16.【解析】

根據(jù)空間位置關系,將平面旋轉后使得各點在同一平面內,結合角的關系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和.將平面繞旋轉至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉至與平面共面的位置,將繞旋轉至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內求解的方法,三角函數(shù)誘導公式的應用,綜合性強,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.18.(1)(2)見解析【解析】

(1)求出函數(shù)的導函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設,求出即可得到參數(shù)的取值范圍;(2)不妨設,,,利用導數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設,∵函數(shù)在上單調遞增,∴,∴,∴實數(shù)的取值范圍為.(2)不妨設,,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當時,.∵,∴.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性、極值與最值,利用導數(shù)證明不等式,考查了推理能力與計算能力,屬于難題.19.(1)在上增;在上減;(2)(i);(ii)2【解析】

(1)求導求出,對分類討論,求出的解,即可得出結論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉化為,恒成立,設,,只需,根據(jù)的單調性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調遞減,所以所以在上單調遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導數(shù)的綜合應用,涉及函數(shù)的單調性、導數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.20.(1)的極坐標方程為,的直角坐標方程為(2)【解析】

(1)先把曲線的參數(shù)方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數(shù)方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數(shù)形結合思想,屬于中檔題.21.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】

(1)根據(jù)函數(shù)解析式,先求得導函數(shù),由是函數(shù)的極值點可求得參數(shù).求得函數(shù)定義域,并根據(jù)導函數(shù)的符號即可判

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論