版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
上海市徐匯區(qū)位育中學2025屆高三教學質(zhì)量檢測試題(一模)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.3.為虛數(shù)單位,則的虛部為()A. B. C. D.4.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.5.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.26.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則7.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.8.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.9.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.10.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.1511.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2512.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米二、填空題:本題共4小題,每小題5分,共20分。13.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.14.已知,則=___________,_____________________________15.數(shù)據(jù)的標準差為_____.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預算(全年按9000小時計算)?并說明理由.18.(12分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.19.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大??;(2)若,,求的值.20.(12分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.21.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.22.(10分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).2.A【解析】
觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。3.C【解析】
利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.4.A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎題.5.B【解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.6.B【解析】
根據(jù)空間中線線、線面位置關(guān)系,逐項判斷即可得出結(jié)果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.7.B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.8.A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數(shù)的應用和古典概型概率的計算,屬于基礎題.9.B【解析】
由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.10.C【解析】
寫出展開式的通項公式,令,即,則可求系數(shù).【詳解】的展開式的通項公式為,令,即時,系數(shù)為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.11.D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.12.B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)題意,由平均數(shù)公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數(shù)、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.14.?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.15.【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.16.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個時間段需要檢查污染源處理系統(tǒng)的概率為.(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調(diào)遞增;當時,,在上單調(diào)遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發(fā)生的概率、期望,及運用求導函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類題目解決的關(guān)鍵在于將生活中的量轉(zhuǎn)化為數(shù)學中和量,屬于中檔題.18.(1).(2)【解析】
(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當時,,.(2)中,,∴.由余弦定理可得,當且僅當時,取等號,即的最大值為3.再根據(jù),故當取得最大值3時,取得最大值為.【點睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.19.(1);(2)【解析】
(1)由三角形面積公式,平面向量數(shù)量積的運算可得,結(jié)合范圍,可求,進而可求的值.(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運算,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.20.(1);(2)【解析】
(1)根據(jù)橫
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南長沙瀏陽市人民醫(yī)院公開招聘編外合同制人員8人備考筆試題庫及答案解析
- 深度解析(2026)《GBT 25987-2010裝甲防暴車》(2026年)深度解析
- 深度解析(2026)《GBT 25931-2010網(wǎng)絡測量和控制系統(tǒng)的精確時鐘同步協(xié)議》
- 福建漳州市2026屆國企類選優(yōu)生招聘(第四批)開考崗位參考考試題庫及答案解析
- 2025廣西百色市樂業(yè)縣專業(yè)森林消防救援隊伍招聘13人備考筆試試題及答案解析
- 2025重慶廣播新聞中心政務服務團隊人員招聘9人參考考試題庫及答案解析
- 深度解析(2026)GBT 25691-2010《土方機械 開斗式鏟運機 容量標定》
- 深度解析(2026)《GBT 25656-2010信息技術(shù) 中文Linux應用編程界面(API)規(guī)范》(2026年)深度解析
- 2025西安交通大學第一附屬醫(yī)院醫(yī)學影像科招聘勞務派遣助理護士參考考試試題及答案解析
- 共享經(jīng)濟合同糾紛與法律規(guī)制研究-基于網(wǎng)約車平臺與駕駛員的勞動關(guān)系認定
- 2025年煙花爆竹經(jīng)營單位安全管理人員考試試題及答案
- 2025天津大學管理崗位集中招聘15人參考筆試試題及答案解析
- 2025廣東廣州黃埔區(qū)第二次招聘社區(qū)專職工作人員50人考試筆試備考題庫及答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試參考題庫及答案解析
- 2026屆上海市青浦區(qū)高三一模數(shù)學試卷和答案
- 2026年重慶安全技術(shù)職業(yè)學院單招職業(yè)技能測試題庫附答案
- 環(huán)衛(wèi)設施設備采購項目投標方案投標文件(技術(shù)方案)
- 微創(chuàng)機器人手術(shù)基層普及路徑
- 24- 解析:吉林省長春市2024屆高三一模歷史試題(解析版)
- 2025年黑龍江省公務員《申論(行政執(zhí)法)》試題含答案
- 福建省福州市倉山區(qū)2024-2025學年三年級上學期期末數(shù)學試題
評論
0/150
提交評論