版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.(湖南省長(zhǎng)郡中學(xué)2024-20A'B'C'D'中,AB=BC=2O為正方形ABCD的中心點(diǎn),將長(zhǎng)方體ABCD-A'B'C'D'繞AB與l夾角的正弦值的最小值為()(參考數(shù)據(jù)長(zhǎng)方體ABCD-A'B'C'D'中,AB=BC=2O為正方形ABCD的中心點(diǎn),則又C'D'=2,在平面C'D'O中,作D'E,D'F,使得∠OD'E=∠OD'F=37°.易知∠C'D'F=60°+37°=97°.故直線AB與l的夾角的正弦值的最小值為2.(湖南省長(zhǎng)郡中學(xué)2024-2025學(xué)年高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試題)已知函數(shù)f(x(=11A.3B.9C.3或9【解析】設(shè)函數(shù)f(x(的最小正周期為T(mén),因?yàn)楹瘮?shù)f(x(在上單調(diào)遞增,所以得②-①得令k=k2-k1,則ω=6k-3,k∈Z,此時(shí)因?yàn)楣蔲(x(在上單調(diào)遞增,符合題意;3.(湖南省長(zhǎng)沙市六校2025屆高三九月大聯(lián)考數(shù)學(xué)試卷)已知f(x(的定義域?yàn)镽,f(x+y(+f(x-y(=3f(x(f(y(,且則A.【解析】由題意知,函數(shù)f(x(的定義域?yàn)镽,f(x+y(+f(x-y(=3f(x(f(y(,且,令x=1,y=0,得f(1+0(+f(1-0(=3f(1(f(0(,所以令x=0,得f(0+y(+f(0-y(=3f(0(f(y(,所以f(-y(=f(y(,所以f(x(是偶函數(shù),令y=1,得f(x+1(+f(x-1(=3f(x(f(1(=f(x(①,所以f(x+2(+f(x(=f(x+1(②,由①②知f(x+2(+f(x-1(=0,所以f(x+3(+f(x(=0,f(x+3(=-f(x(,所以f(x+6(=-f(x+3(=f(x(,所以f(x(的一個(gè)周期是6,由②得f(2(+f(0(=f(1(,所以,同理f(3(+f(1(=f(2(,所以,所以f(1(+f(2(+f(3(+…+f(6(=0,24.(山東省濟(jì)南市2025屆高三上學(xué)期開(kāi)學(xué)摸底考試數(shù)學(xué)試題)設(shè)x1<x2<x3<x4<x5,隨機(jī)變量ξ1取A.E(ξ1(>E(ξ2(B.E(ξ1(<E(ξ2(C.D(ξ1(>D(ξ2(D.D(ξ1(<D(ξ2(【解析】E(ξ1(=0.2×x1+0.2×x2+…+0.2×x5=ixi,故E(ξ1(=E(ξ2(,故A、B錯(cuò)誤;設(shè)E(ξ1(=E(ξ2(=m,=ix-m×5m+m2=ix-m2=(x+x+x+x+x-5m2(,同理:D(ξ2(=2+2+2+2+2-5m2即D(ξ1(>D(ξ2(,故C正確,D錯(cuò)誤;5.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)在正四棱錐P-A1B1C1D1中,PB1B1=2,則幾何體ABCD-A1B1C1D1的體積為()3解得:a=2,所以PO1=PB-B1O2=22-(2(2=2,又因?yàn)橛靡粋€(gè)平行于底面的平面去截該正四棱錐,得到幾何體ABCD-A1B1C1D1,AB=1,則幾何體ABCD-A1B1C1D1為正四棱臺(tái),所以O(shè)O1==,所以幾何體ABCD-A1B1C1D1的體積為:2+12+、22.12(.=.6.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=tan(ωx+(ωA.(2,3[B.[2,3(C.(3,4[D.[3,4(則由題意可得y=tanx-1在x∈,ωπ+上有3個(gè)實(shí)數(shù)根,即可得+3π<ωπ+≤+4π,7.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=2x+2-x+cosx+x2,若a=f(-3(,b=f(e(,c=f(π(,則()A.b<a<cB.b<c<aC.c<a<bD免.眾a號(hào):凹凸學(xué)長(zhǎng)【解析】因?yàn)閒(x(=2x+2-x+cosx+x2,所以函數(shù)定義域?yàn)镽,f(-x(=2-x+2x+cos(-x(+(-x(2=2x+2-x+cosx+x2=f(x(,所以函數(shù)f(x(為偶函數(shù),故a=f(-3(=f(3(,當(dāng)x>0時(shí),f/(x(=(2x-2-x(ln2+(2x-sinx(=g(x(,所以g/(x(=(2x+2-x((ln2(2+(2-cosx(,因?yàn)?2x+2-x((ln2(2>0,2-cosx>0,所以g/(x(>0,所以g(x(在(0,+∞(單調(diào)遞增,故g(x(>g(0(=0即f/(x(>0,4所以f(x(在(0,+∞(單調(diào)遞增,又e<3<π,所以f(e(<f(3(<f(π(,所以b<a<c.8.(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=lnx-(a+1(x+1,g(x(=a(x2+1(.當(dāng)x≥1時(shí),2f(x(+g(x(≥0恒成立,則a的取值范圍為()A.(0,1(B.(1,+∞(C.(0,1[D.[1,+∞(【解析】令h(x(=2f(x(+g(x(=2lnx-2(a+1(x+ax2+a+2(x≥1(,若a≤0,則h/(x(≤0在[1,+∞(上恒成立,則h(x(在[1,+∞(上單調(diào)遞減,則h(x(≤h(1(=0,不符合題意.x(<0,h(x(單調(diào)遞減,則h(x(≤h(1(=0,不符合題意.若a≥1,則h/(x(≥0在[1,+∞(上恒成立,則h(x(在[1,+∞(上單調(diào)遞增,即h(x(≥h(1(=0,符合題意.故a的取值范圍為[1,+∞(.9.(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)質(zhì)檢考試數(shù)學(xué)試題)如圖,將繪有函數(shù)f(x(=5連接AB,BE,則由上可知,x軸垂直于BD,DE,又BD∩DE=D,BD,DE?平面BDE,所以x軸垂直于平面BDE,又AE?x軸,所以因?yàn)锽E?平面BDE,所以AE⊥BE,因?yàn)閒(x(的周期所以AE=CD=3,10.(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)質(zhì)檢考試數(shù)學(xué)試題)已知f(x)=2x+2-x+cosx+x2,c=f(4ln3π)A.a<b<cB.b<c<aC.c<a<bD.b<a<c(x)=(2x-2-x(ln2-sinx+2x,設(shè)s(x)=(2x-2-x(ln2-sinx+2x,s/(x)=(2x+2-x(ln22-cosx+2>0,故在(0,+∞(上s(x)為增函數(shù),故s(x)>s(0(=0即f/(x(>0(x>0),故f(x(在(0,+∞(上為增函數(shù),設(shè)則故u(x(在(e,+∞(上為減函數(shù),所以4lnπ3>πl(wèi)n43>0,故f(4lnπ3(故f(4ln3π(>f(4lnπ3(,故c>a,A.B.C.D.6滿足解得.12.(安徽省六校教育研究會(huì)2025屆高三上學(xué)期入學(xué)考試數(shù)學(xué)試卷)已知函數(shù)f(x(的定義域?yàn)镽,且f(x+2(+f(x(=f(12(,f(-3x+1(為奇函數(shù),且則)A.-11B.D.0【解析】由于f(x+2(+f(x(=f(12(,所以f(x+4(+f(x+2(=f(12(,則f(x+4(=f(x(,因此T=4.令x=0,則f(2(+f(0(=f(12(=f(0(,故f(2(=0.由于f(-3x+1(為奇函數(shù),故-f(-3x+1(=f(3x+1(,即f(x+1(+f(-x+1(=0,故f(x(關(guān)于點(diǎn)(1,0(對(duì)稱.由題,f(x+2(+f(x(=f(12(=0,∴f(x+2(=-f(x(=f(2-x(,故f(x(關(guān)于直線x=2對(duì)稱,13.(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)已知函數(shù)f(x(的定義域?yàn)镽,y=f(x(+ex是偶函數(shù),y=f(x(-xB.3C.【解析】因?yàn)楹瘮?shù)y=f(x(+ex為偶函數(shù),則f(-x(+e-x=f(x(+ex,即f(x(-f(-x(=e-x-ex①,7又因?yàn)楹瘮?shù)y=f(x(-3ex為奇函數(shù),則f(-x(-3e-x=-f(x(+3ex,即f(x(+f(-x(=3ex+3e-x②,聯(lián)立①②可得f(x(=ex+2e-x,所以f(ln3(=eln3+2e-ln3=.14.(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)數(shù)列{an{的前n項(xiàng)和為Sn,滿足an+1-an={1,3},a1=2n=2+d1+d2+…+dn-1,其中di∈{1,3},故n+1≤an≤3n-1,且{an{奇偶交錯(cuò)出現(xiàn).i∈{1,3}可得對(duì)an可取遍[n+1,3n-1]中的每一個(gè)奇數(shù);i∈{1,3}可得對(duì)an可取遍[n+1,3n-1]中的每一個(gè)偶數(shù),n=2n+(n-1)d1+(n-2)d2+…+dn-1,i=1(i=1,2,…,n-1)時(shí),Sn=,考慮di=1(i=1,2,…,n-1)時(shí),di調(diào)整為3,則對(duì)應(yīng)的Sn可增加2(n-i),依次對(duì)諸di(至少一個(gè))調(diào)整為3后+2≤Sn≤+2+2×2+2×3+…+2(n-1),足an+1-an=dn∈{1,3{,a1=2,則S10可能的不同取值的個(gè)數(shù)為()【解析】由累加法可得an=2+d1+d2+…+dn-1,其中di∈{1,3{,故n+1≤an≤3n-1,且{an{奇偶交錯(cuò)出現(xiàn).ni∈{1,3{可得對(duì)an可取遍[n+1,3n-1[中的每一個(gè)奇數(shù);ni∈{1,3{可得對(duì)an可取遍[n+1,3n-1[中的每一個(gè)偶數(shù),n=2n+(n-1(d1+(n-2(d2+…+dn-1,考慮di=1(i=1,2,…,n-1(時(shí),di調(diào)整為3,則對(duì)應(yīng)的Sn可增加2(n-i(,816.(安徽省安徽師范大學(xué)附屬中學(xué)2025屆高三上學(xué)期9月第一次測(cè)試數(shù)學(xué)試題)F1,F2是雙曲線E:-=1(a,b>0(的左、右焦點(diǎn),點(diǎn)M為雙曲線E右支上一點(diǎn),點(diǎn)N在x軸上,滿足∠+5M2=λM(λ∈R(,則雙曲線E的離心率為()A.B.C.D.設(shè)λM=M,則3M1+5M2=M,∴MQ是以3|MF1|,5|MF2|為鄰邊的平行四邊形的-|MF2|=2a,∴|MF2|=3a,|MF1|=5a,∴雙曲線E的離心率e===.17.(安徽省多校聯(lián)考2025屆高三上學(xué)期開(kāi)學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)若銳角θ滿足tan2θ=23cosθ,數(shù)列{an{的前n項(xiàng)和為Sn,a1=1,nan+1=+cos4θ((n+1(an,則使得Sn+<成立的n的最大值為()A.2B.3C.4D.59整理可得23sin2θ+sinθ-3=0,解得sinθ=3或sinθ=-3(舍去),則cos2θ=1-2sin2θ=,cos4θ=2cos22θ-1=-,可得nan+1=(+cos4θ((n+1(an=(n+1(an,則=,11n{是以首項(xiàng)(11n{是以首項(xiàng)((94n+nn+n-13n=2n94n+nn+n-13n=2n則-n-1則Sn+23n=-4×n-2<,整理可得3n-2<25,則n-2≤2,解得n≤4,所以n的最大值為4.1111nnn{是以首項(xiàng)((20.(浙江省名校協(xié)作體2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)試題)已知A,B是橢圓與雙曲線的公共頂點(diǎn),M是雙曲線上一點(diǎn),直線MA,MB分別交橢圓于A.B.3C.23D.3【解析】由A,B是橢圓2+2=1與雙曲線2-2=1不妨設(shè)直線CD過(guò)橢圓的右焦點(diǎn)F(1,0(,設(shè)點(diǎn)M(x0,y0(,則直線MA,MB的斜率分別為kMA=,kMB=-,設(shè)點(diǎn)C(x1,y1(,則直線CA,CB的斜率分別為kCA=,kCB=-,因?yàn)閗MA=kCA,所以kMB=kBD=-kCB,21.(浙江省名校協(xié)作體2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)試題)正三棱臺(tái)ABC-A1B1C1中,AB=2A1B1=23,AA1=2,點(diǎn)D為棱AB中點(diǎn),直線l為平面A1B1C1-l-D的平面角為θ,則cosθ的最小值為()A.0B.E于點(diǎn)F,四邊形ABB1A1為等腰梯形,D,E分別為AB,A1B1的中點(diǎn),則有C1E⊥A1B1,ED⊥A1B1,C1E∩ED=E,C1E,ED?面EDCC1,所以A1B1⊥面EDCC1,DF,CF?面EDCC1,得DF⊥l,CF⊥l,則∠CFD為二面角C-l-D的平面角,由對(duì)稱性可知當(dāng)FC=FD時(shí),∠CFD最大,作FH⊥CD,AB=2A1B1=23,AA1=2,點(diǎn)D為棱AB中點(diǎn),則CD=3,22.(江蘇省海安高級(jí)中學(xué)2025屆高三上學(xué)期期初檢測(cè)數(shù)學(xué)試卷)已知a>0,b>0,log9a=log12b=C.9a=log12b=log16(a+b(=k,23.(江蘇省海安高級(jí)中學(xué)2025屆高三上學(xué)期期初檢測(cè)數(shù)學(xué)試卷)已知a=5,b=15(ln4-ln3),c=16(ln5-ln4),則()A.a<c<bB.c<b<aC.b<a<cD.a<b<c3<2.5,∴e>3,∴a>b,將其沿對(duì)角線AC折成直二面角.設(shè)E為AD的中點(diǎn),F(xiàn)為BC的中點(diǎn),將△EOF繞直線EF旋轉(zhuǎn)一周則可得,DO⊥AC,DO=2,AC=22,平面DAC⊥平面BAC,又平面DAC∩平面BAC=AC,DO?平面DAC,∴DO⊥平面BAC,則可得OE=DC=1,OF=AB=1,過(guò)E作EH⊥AC于點(diǎn)H,連接HF,又HF?平面BAC,∴EH⊥HF在Rt△EHF中又OE=OF=1,將△EOF繞直線EF旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體為兩個(gè)同底面的圓錐組合體,在同一個(gè)部分的概率為()所以八個(gè)部分中的點(diǎn)的個(gè)數(shù)分別為23,22,22,2概率為所以這2個(gè)點(diǎn)不在同一個(gè)部分的概率為P=1-P1=1-=.tan∠OCO/1-tan2∠OCO/,則AO=OC.tan∠ACB=1tan∠OCO/1-tan2∠OCO/,3tan2∠OCO/.(1-tan2∠OCO/(,因?yàn)椤螦CB<90°,∠OCO/<45°,所以tan∠OCO/<1,1-tan2∠OCO/>0,又tan2∠OCO/+(1-tan2∠OCO/(=1為定值,所以當(dāng)tan2∠OCO/=1-tan2∠OCO/,即tan∠OCO/=時(shí),圓錐的體積最小為V=×=,其中AC,BD分別為兩個(gè)截面橢圓的長(zhǎng)軸,且A,C,B,D都位于圓柱的同一個(gè)軸截面上,AD是圓柱截值可以是()【解析】設(shè)AD=2r,AB=2m,CD=2n,且n≥2m,故BD=AB2+AD2=2m2+r2,AC=CD2+AD2=2n2+r2,故-1=,-1=,對(duì)于故D正確,28.(多選題)(湖南省長(zhǎng)郡中學(xué)2024-2025學(xué)年高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試題)對(duì)于任意實(shí)數(shù)x,-y|+x+y,則滿足條件a⊕b=A.a=-log0.50.3,b=0.40.3,c=log0.50.4B.a=0.40.3,b=log0.50.4,c=-log0.50.3-b|+a+b=|b-c|+b+c,即|a-b|-|b-c|=c-a,若a≤b,c≤b,可得|a-b|-|b-c|=c-a,符合題意,若a≤b,c>b,可得|a-b|-|b-c|=2b-a-c,不符合題意,若a>b,c≤b,可得|a-b|-|b-c|=a-c,不符合題意,若a>b,c>b,可得|a-b|-|b-c|=c+a-2b,不符合題意,綜上所述a-b≤0,b-c≥0,可得b≥a,b≥c,對(duì)于A,B,由題知-log0.50.3=log0.5<log0.51=0,而0log0.50.4>log0.50.5=1,所以-log0.50.3<0.40.3<log0.50.4.(將0.9轉(zhuǎn)化為1-0.1,方便構(gòu)造函數(shù))構(gòu)造函數(shù)f(x(=(1-x(ex,x∈[0,1(,則f/(x(=-xex,因?yàn)閤∈[0,1(,所以f/(x(≤0,f(x(單調(diào)遞減,因?yàn)閒(0(=1,所以f(0.1(<1,0.1<1-ln=-ln-1=+ln=+ln(1-0.1(,構(gòu)造函數(shù)h(x(=+ln(1-x(,x∈[0,1(,則h/(x(=--=,因?yàn)閤∈[0,1(,所以ex(1-x(>0,令ω(x(=(1-x(2-ex,則ω/(x(=-2(1-x(-ex,所以ω(x(≤0,即h/(x(≤0,h(x(單調(diào)遞減,又h(0(=0,所以h(0.1(<0,即+ln(1-0.1(<0,所以<ln.構(gòu)造函數(shù)g(x(=(1-x(x+lnx,x∈(0,1[,因?yàn)閤∈(0,1[,所以g/(x(≥即0.09-ln<0,所以0.09<ln)中國(guó)結(jié)的意義在于它所顯示的情致與智慧正是漢族古老文明中的一個(gè)側(cè)面,也是數(shù)學(xué)奧秘的游戲呈現(xiàn).它有著復(fù)雜曼妙的曲線,卻可以還原成最單純的二維線條.其中的八字結(jié)對(duì)應(yīng)著數(shù)學(xué)曲線中的雙紐線.曲線C:(x2+y2)2=9(x2-y2)是雙紐線,則下列結(jié)論正確的是()A.曲線C的圖象關(guān)于y=x對(duì)稱D.若直線y=kx與曲線C只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍為(-∞,-1]∪[1,+∞)2+y2)2=9(x2-y2)得(x2+y2)2=9(y2-x2),顯然點(diǎn)(y,x)不滿足雙紐線方程,由題意可知,-3≤x≤3,對(duì)于D項(xiàng),直線y=kx與曲線(x2+y2)2=9(x2-y2)一定有公共點(diǎn)(0,0),若直線y=kx與曲線C只有一個(gè)交點(diǎn),y=kxy=kxk2)2=9x2(1-k2),只有一個(gè)解x=0,即1-k2≤0,解得k∈(-∞,-1]∪[1,+∞),故D項(xiàng)正確.30.(多選題)(湖南省長(zhǎng)沙市六校2025屆高三九月大聯(lián)考數(shù)學(xué)試卷)已知函數(shù)f(x(=x2-2lnx,則下列選A.函數(shù)f(x(的極小值點(diǎn)為x=1C.若函數(shù)g(x(=f(|x|(-t有4個(gè)零點(diǎn),則t∈(1,+∞(D.若f(x1(=f(x2((x1≠x2(,則x1+x2<2【解析】由題意可知:f(x(的定義域?yàn)?0,+∞(,且f/(x(=2x-=,令f/(x(>0,解得x>1;令f/(x(<0,解得0<x<1;可知f(x(在(0,1(內(nèi)單調(diào)遞減,在(1,+∞(內(nèi)單調(diào)遞增,則f(x(≥f(1(=1,且當(dāng)x趨近于0或+∞時(shí),f(x(趨近于+∞,對(duì)于選項(xiàng)A:可知函數(shù)f(x(的極小值點(diǎn)為x=對(duì)于選項(xiàng)B:因?yàn)?<e<3,且f(x(在(1,+∞(內(nèi)單調(diào)遞增,ee所以f(e(<e對(duì)于選項(xiàng)C:令g(x(=f(|x|(-t=0,可得f(|x|(=t,可知函數(shù)g(x(=f(|x|(-t有4個(gè)零點(diǎn),即y=f(|x|(與y=t有4個(gè)交點(diǎn),且y=f(|x|(的定義域?yàn)?-∞,0(∪(0,+∞(,且f(|-x|(=f(|x|(,可知y=f(|x|(為偶函數(shù),且當(dāng)x>0時(shí),y=f(|x|(=f(x(原題意等價(jià)于當(dāng)x>0時(shí),y=f(x(與y=t有2個(gè)交點(diǎn),對(duì)于選項(xiàng)D:設(shè)g(x(=f(2-x(-f(x(=2lnx-2ln(2-x(+4-4x,x∈(0,1(,可知y=g(x(在(0,1(內(nèi)單調(diào)遞增,則g(x(<g(1(=0,即f(2-x(<f(x(,x∈(0,1(,若f(x1(=f(x2((x1≠x2(,不妨設(shè)0<x1<1<x2,則f(2-x1(<f(x1(=f(x2(,且2-x1>1,x2>1,且f(x(在(1,+∞(內(nèi)單調(diào)遞增,則2-x1<x2,所以x1+x2>2,故D錯(cuò)誤;31.(多選題)(山東省濟(jì)南市2025屆高三上學(xué)期開(kāi)學(xué)摸底考試數(shù)學(xué)試題)已知函數(shù)f(x(=x3-3x2+ax-A.f(x(至少有一個(gè)零點(diǎn)B.存在a,使得f(x(有且僅有一個(gè)極值點(diǎn)C.點(diǎn)(1,-1(是曲線y=f(x(的對(duì)稱中心D.當(dāng)a≤0時(shí),f(x(在[0,1[上單調(diào)遞減【解析】對(duì)A:由f(1(=1-3+a-a+1=-1<0,當(dāng)x→+∞時(shí),f(x(→+∞,故f(x(在(1,+∞(上必有零點(diǎn),即f(x(至少有一個(gè)零點(diǎn),故A正確;則f/(x(=3x2-6x+a有唯一變號(hào)零點(diǎn),對(duì)C:f(-x+2(+2=(-x+2(3-3(-x+2(2+a(-x+2(-a+1+2=-x3+6x2-12x+8-3x2+12x-12-ax+2a-a+1+2=-x3+3x2-ax+a-1,有f(x(+f(-x+2(+2=x3-3x2+ax-a+1-x3+3x2-ax+a-1=0,故點(diǎn)(1,-1(是曲線y=f(x(的對(duì)稱中心,故C正確;對(duì)D:f/(x(=3x2-6x+a=3(x-1(2+a-3,當(dāng)x∈[0,1[,f/(x(=3(x-1(2+a-3∈[a-3,a[,由a≤0,則f/(x(≤0,故f(x(在[0,1[上單調(diào)遞減,故D正確.點(diǎn)A(-1,0(,B(1,0(,直線AM,BM相交于點(diǎn)M,且它們的斜率之和是2.設(shè)動(dòng)點(diǎn)M(x,y(的軌跡為C.若曲線C與直線y=kx(k>0)無(wú)交點(diǎn),則k≥1化簡(jiǎn)可得動(dòng)點(diǎn)M的軌跡方程為x2-xy-1=0,將(-x,-y(代入曲線方程可得(-x(2-(-x(.(-y(-1=x2-xy-1=0成立,做出曲線x2-xy-1=0,易知該曲線可表示漸近線為y=x及y軸的雙曲線,則對(duì)稱軸過(guò)原點(diǎn)且傾斜角為或,則其對(duì)稱軸為y=(1±2(x,B選項(xiàng)錯(cuò)誤;聯(lián)立直線與曲線方程,得(1-k(x2-1=0無(wú)解,則1-k=0或4(1-k(<0,2x=22y=-2!y=2且|MN|=2,33.(多選題)(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知定義在R上的函數(shù)f(x(不恒等于0,f(π(=0,且對(duì)任意的x,y∈R,有f(2x(+f(2y(=2f(x+y(f(x-y(,則()A.f(0(=1B.f(x(是偶函數(shù)C.f(x(的圖象關(guān)于點(diǎn)(π,0(中心對(duì)稱D.2π是f(x(的一個(gè)周期【解析】對(duì)于A,根據(jù)題意令x=y,則由f(2x(+f(2y(=2f(x+y(f(x-y(可得f(2x(+f(2x(=2f(2x(f(0(,解得f(0(=1,即A正確;對(duì)于B,令x=-y可得f(2x(+f(-2x(=2f(0(f(2x(=2f(2x(,所以f(2x(=f(-2x(,即可得對(duì)任意的x∈R滿足f(x(=f(-x(,即f(x(是偶函數(shù),所以B正確;對(duì)于C,令x+y=π,則由f(2x(+f(2y(=2f(x+y(f(x-y(可得f(2π-2y(+f(2y(=2f(π(f(π-2y(=即f(x(滿足f(2π-x(+f(x(=0,因此可得f(x(的圖象關(guān)于點(diǎn)(π,0(中心對(duì)稱,即C正確;對(duì)于D,由于f(x(是偶函數(shù),所以滿足f(x-2π(+f(x(=0,即f(x(+f(x+2π(=0,可得f(x-2π(=f(x+2π(,也即f(x(=f(x+4π(,所以4π是f(x(的一個(gè)周期,即D錯(cuò)誤.得的第一枚金牌.藝術(shù)體操的繩操和帶操可以舞出類似四角花瓣的圖案,它可看作由拋物線C:y2=A.開(kāi)口向上的拋物線的方程為B.|AB|=4C.直線x+y=t截第一象限花瓣的弦長(zhǎng)最大值為D.陰影區(qū)域的面積大于4由圖象對(duì)稱性,可得A(2,2),B(2,-2),故|AB|=4,即B正確;如圖,設(shè)直線x+y=t與第一象限花瓣分別交于點(diǎn)M,N,即得M(t+1-2t+1,2t+1-1),N(2t+1-1,t+1-2t+1),在拋物線y=x2,(x≥0)上取一點(diǎn)P,使過(guò)點(diǎn)P的切線與直線OA平行,1,因lOA:x-y=0,則點(diǎn)P到直線1,因lOA:x-y=0,則點(diǎn)P到直線OA的距離為d=2=435.(多選題)(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB+csinA=5sinA,bc=b+c+1,△ABC的面積為22,則△ABCA.8B.5+17C.9D.5+15△ABC=bcsinA=22,得sinA=,所以cosA=、1-sin2A=±,由余弦定理a2=b2+c2-2bc所以△ABC的周長(zhǎng)為8或5+17,36.(多選題)(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=sinx+cosx+x,則下列結(jié)論正確的是()A.f(x(的圖象關(guān)于y軸對(duì)稱B.f(x(的圖象關(guān)于點(diǎn)(-,-對(duì)稱C.f(x(的圖象關(guān)于直線x=對(duì)稱D.x=是f(x(的極大值點(diǎn)【解析】對(duì)于A:函數(shù)f(x(=sinx+cosx+x的定義域?yàn)镽,但是f(-x(=sin(-x(+cos(-x(+(-x(=-sinx+cosx-x≠f(x(,所以f(x(不是偶函數(shù),則函數(shù)圖象不關(guān)于y軸對(duì)稱,故A對(duì)于B:因?yàn)閒(--x(+f(x(=sin(--x(+cos(--x(+(--x(+sinx+cosx+x=-cosx-sinx--x+sinx+cosx+x=-,所以f(x(的圖象關(guān)于點(diǎn)對(duì)稱,故B正確;對(duì)于C:因?yàn)閒(π-x(=sin(π-x(+cos(π-x(+(π-x(=sinx-cosx+π-x≠f(x(,所以f(x(的圖象不關(guān)于直線x=對(duì)稱,故C錯(cuò)誤;對(duì)于D:因?yàn)閒(x(=sinx+cosx+x,所以f(x(=cosx-sinx+1=2cos(x++1,則f=2cos++1=0,且當(dāng)-π<x<時(shí)f(x(>0,當(dāng)<x<π時(shí)f(x(<0,ff(x(在處取得極大值,故D正確.37.(多選題)(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)質(zhì)檢考試數(shù)學(xué)試題)拋物線C:x2=下列結(jié)論正確的是()B.拋物線的準(zhǔn)線方程為:y=-1C.當(dāng)直線l過(guò)焦點(diǎn)F時(shí),以AF為直徑的圓與x軸相切D.|AF|+|BF|≥4故以AF為直徑的圓的半徑為,又F(0,1(,故以AF為直徑的圓的圓心坐標(biāo)為,整理得x2-4kx-4m=0,Δ=(-4k(2+16m>0,即k2+m>0,所以xA+xB=4k,xAxB=-4m,所以|AF|+|BF|=yA+1+yB+1=yA+yB+2=4k2+2m+2,38.(多選題)(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開(kāi)學(xué)質(zhì)檢考試數(shù)學(xué)試題)已知函g(x(的定義域?yàn)镽,g(x(的導(dǎo)函數(shù)為g/(x(,且f(x(+g/(x(=5,f(x-1(-g/(5-x(=5,若g(x(為偶A.f(0(=5C.若存在x0使f(x(在(0,x0(上單調(diào)遞增,在(x0,2(上單調(diào)遞減,則g(x(的極小值點(diǎn)為4k(k∈Z(D.若f(x(為偶函數(shù),則滿足題意的f(x(唯一,滿足題意的g(x(不唯一0(=5?f(0(=5,故A對(duì);對(duì)B,由f(x(+g/(x(=5,f(x-1(-g/(5-x(=5,得f(4-x(-g/(x(=5,所以f(4-x(+f(x(=10,所以f(1(+f(3(=10,f(2(=f(4(=5,又f(x(=5-g/(x(=5+g/(-x(=f(x+4(,所以f(x(是周期為4的函數(shù),g/(x(也是周期為4的函數(shù),所以f(1(+f(2(+f(3(+…+f(2024(=20×506=10120,故B對(duì);對(duì)C,f(x(在(0,x0(上單調(diào)遞增,在(x0,2(上單調(diào)遞減,由f(4-x(+f(x(=10,y=f(x(的圖象關(guān)于(2,5(對(duì)稱且f(2(=5,由A可得f(0(=5,故f(x(在[0,x0(上單調(diào)遞增,在(x0,2[上單調(diào)遞減,可知f(x(在[2,4-x0(單調(diào)遞減,在(4-x0,4[單調(diào)遞增,又f(x(的周期為4,所以f(x(在(-x0,0[單調(diào)遞增,所以g/(x(在(-x0,0[單調(diào)遞減,在[0,x0(單調(diào)遞減,又g/(0(=0x(是周期為4的函數(shù),對(duì)D,若f(x(為偶函數(shù),由于g/(x(是奇函數(shù),f(x(+g/(x(=5,則f(-x(+g/(-x(=5,即f(x(-g/(x(=5,所以f(x(=5,g/(x(=0,所以f(x(唯一,g(x(不唯一,故D對(duì).伯努利描述了如圖的曲線,我們將其稱為伯努利雙紐線,定義在平面直角坐標(biāo)系xOF(-a,0(,F2(a,0(距離之積等于a2(a>0)的點(diǎn)的軌跡稱為雙紐線,已知點(diǎn)P(x0,y0(是a=1時(shí)的雙紐A.雙紐線C的方程為當(dāng)a=1時(shí),則雙紐線C的方程為(x+1)2+y2×(x-1)2+y2=1,化簡(jiǎn)可得(x2+y2(2=2(x2-y2(,故A正確;由等面積法得S△F1PF2=|PF1|.|PF2|.sin∠F1PF2=|F1F,所以-≤y0≤,故B正確;所以P在線段F1F2的中垂線即x=0上,2×1+y2=1|.|P2+2|.|P2+2|.|P2|.|P240.(多選題)(安徽省六校教育研究會(huì)2025屆高三上學(xué)期入學(xué)考試數(shù)學(xué)試卷)已知函數(shù)f(x(=ex,g(x(=A.函數(shù)f(x(的圖像與函數(shù)y=x2的圖像有且僅有一個(gè)公共點(diǎn)B.函數(shù)f(x(的圖像與函數(shù)g(x(的圖像沒(méi)有公切線C.函數(shù)φ(x(=,則φ(x(有極大D.當(dāng)m≤2時(shí),f(x(>g(x+m(恒成立即m(x(=在區(qū)間(0,2(上單調(diào)遞減,在區(qū)間(2,+∞)上單調(diào)遞增,2所以在x=2時(shí)m(x(取最小值m(2(=>1,即ex>x2,對(duì)于選項(xiàng)B,設(shè)與f(x(切于點(diǎn)(x1,ex(,與g(x(切于點(diǎn)(x2,lnx2(則ex1==-x1-ex1-1=0,判斷方程根的個(gè)數(shù)即為公切線條數(shù),令u(x(=x1ex-x1-ex-1,則u/(x(=x1ex-1,易知u/(x(=x1ex-1在(-∞,0(上恒小于0,當(dāng)x∈(0,+∞(時(shí),令M(x(=xex-1,則M/(x(=(x+1)ex>0在區(qū)間(0,+∞(上恒成立,即M(x(=xex-1在區(qū)間(0,+∞(上單調(diào)遞增,又M(0(=-1<0,M(1(=e-1>0,所以在(0,1(上有x=x0使得u/(x0(=x0ex-1=0,即x0ex=1,所以u(píng)(x(在(-∞,x0(上單調(diào)遞減,在(x0,+∞(上單調(diào)遞增,且u(x0(=-x0-<0,當(dāng)x→-∞,u(x(→+∞;x→+∞,u(x(→+∞,所以方程有兩解,f(x(與g(x(的圖像有兩條公切線,所以選項(xiàng)B錯(cuò)誤,x(=.,所以k(x(在(0,+∞(上單調(diào)遞減,又k(1(=1>0,k(2(=-ln2<0,x0(=0,則φ(x(在(0,x0(上單調(diào)遞增,在(x0,+∞(上單調(diào)遞減,對(duì)于選項(xiàng)D,G(x)=ex-x-1,則G/(x)=ex-1,當(dāng)x<0時(shí)G/(x)=ex-1<0,x>0時(shí),G/(x)=ex-1>0,所以G(x)=ex-x-1≥G(0)=0,即ex≥x+1,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),令g(x)=x+1-ln(x+2(,則g/(x)=1-=>0在區(qū)間(-2,+∞(上恒成立,又g(-1)=-1+1-ln(-1+2(=0,所以x+1≥ln(x+2(,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),又m≥2,當(dāng)m=2時(shí),y=ln(x+2)與y=ln(x+m)重合,當(dāng)m>2時(shí),y=ln(x+m)的圖象由y=ln(x+2)向右平移,此時(shí)y=ln(x+m)圖象恒在y=ln(x+2)下方,所以ex≥x+1≥ln(x+2(≥ln(x+m(,且等號(hào)不能同時(shí)取到,故選項(xiàng)D正確.41.(多選題)(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)設(shè)函數(shù)f(x(=(x-a)2(x-4(,定義域?yàn)镽,若關(guān)于x的不等式f(x(≥0的解集為{x|x≥4或x=1},下列說(shuō)法正確的是()A.f(x(的極大值為0B.點(diǎn)(2,-2(是曲線y=f(x(的對(duì)稱中心C.直線y=9x-4與函數(shù)f(x(的圖象相切D.若函數(shù)f(x(在區(qū)間(m,4(上存在最小值,則m的取值范圍為(0,3(【解析】對(duì)于A,由f(x(=(x-a)2(x-4(≥0,解得x≥4或x=a,所以a=1,f(x(=(x-1)2(x-4(,則f/(x(=2(x-1((x-4(+(x-1)2=3(x-1((x-3(,f/(x(<0;當(dāng)x∈(-∞,1(或x∈(3,+∞(時(shí),f/(x(>0;可知f(x(在(-∞,1(,(3,+∞(上單調(diào)遞增,在(1,3(上單調(diào)遞減,所以函數(shù)f(x(的極大值為f(1(=0,故A正確;對(duì)于B,因?yàn)閒(2+x(+f(2-x(=(x+1)2(x-2(+(1-x)2(-x-2(=-4,故B正確;所以直線y=9x-4與函數(shù)f(x(的圖象相切于(0,-4(,故C正確;對(duì)于D,由A選項(xiàng)知f(x(在(-∞,1(,(3,+∞(上單調(diào)遞增,在(1,3(上單調(diào)遞減,又f(3(=-4,令f(x(=-4,解得x=0或3,函數(shù)f(x(在區(qū)間(m,4(上存在最小值,42.(多選題)(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)已知曲線C:(x2+y2-2(2=4+8xy,點(diǎn)P(x0,y0(為曲線C上任意一點(diǎn),則()A.曲線C的圖象由兩個(gè)圓構(gòu)成B.x+y的最大值為22C.的取值范圍為-,1D.直線y=x+2與曲線C有且僅有3個(gè)交點(diǎn)+y2-2(2=4+8xy,得(x2+y2(2-4(x2+y2(+4=4+8xy,即(x2+y2(2-4(x+y)2=0,即(x2+y2+2x+2y((x2+y2-2x-2y(=0,所以x2+y2+2x+2y=0或x2+y2-2x-2y=0,即(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2,所以曲線C表示以M(-1,-1(,N(1,1(為圓心,2為半徑的兩個(gè)圓,所以A正確;對(duì)于B中,由x+y表示點(diǎn)(x0,y0(到原點(diǎn)距離的平方,對(duì)于C中,如圖所示,設(shè)過(guò)點(diǎn)A(-4,-2(且與圓N相切的直線方程為y=k(x+4(-2,則點(diǎn)N到該直線的距離解得即圖中直線AC的斜率為1,可得直線AC的方程為y=x+2,點(diǎn)M到直線AC的距離d2=2,則直線AC與圓M相切,設(shè)過(guò)點(diǎn)A且與圓M相切的直線方程為y=k/(x+4(-2,=2,解得k=1,k=-,y0+2x0+4表示的是點(diǎn)(x0,y0(到點(diǎn)y0+2x0+4點(diǎn)的軌跡是卡西尼卵形線.在平面直角坐標(biāo)系xOy中,設(shè)定點(diǎn)F1(-c,0(,F(xiàn)2(c,0(,其中c>0,動(dòng)點(diǎn)P(x,y(滿足|PF1|.|PF2|=a2(a≥0且a為常數(shù)),化簡(jiǎn)可()2=a2對(duì)于B,以-x代x,得(-x)2+y2+c2=4c2(-x)2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于y軸對(duì)-y代y,得x2+(-y)2+c2=、4c2x2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于x軸對(duì)稱,以-x代x,-y代y,得(-x)2+(-y)2+c2=4c2(-x)2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于原2+y2+a2=、4a2x2+a4,得y2=、4a2x2+a4-x2-a2≥0,解得x2≤2a2,所以|OP|2=x2+y2=4x2a2+a4-a2≤4.2a2.a2+a4-a2=2a2,對(duì)于D,若存在點(diǎn)P,使得PF1⊥PF2,則P1⊥P2,因?yàn)镻1=(-c-x,-y),P2=(c-x,-y),所以x2-44.(多選題)(安徽省多校聯(lián)考2025屆高三上學(xué)期開(kāi)學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)設(shè)F1,F2分別為橢圓C:2+y22y2A.存在四個(gè)點(diǎn)P,使得PF1⊥PF2B.若點(diǎn)P不在x軸上,直線PF1的斜率是直線PF2的斜率的-3倍,則點(diǎn)P的橫坐標(biāo)為-2+=4,b2=2,所以a=2,b=2,c=2,對(duì)于B:設(shè)P(m,n),若存在點(diǎn)P使直線PF1的斜率是直線PF2的斜率的-3倍,m+2m-22則n-0=-3×n-0,解得m=-2,又-2<m<m+2m-22對(duì)于C:設(shè)P(m,n)(-2≤n≤2),P.P2=(-2-m)(2-m)+(-n)(-n)=m2+n2-2=2-n2,.P2P2=<2-2,故等號(hào)不成立,故D錯(cuò)誤.45.(多選題)(江蘇省海安高級(jí)中學(xué)2025屆高三上學(xué)期期初檢測(cè)數(shù)學(xué)試卷)已知函數(shù)f(x(=cosxsin2x.A.y=f(x(圖像關(guān)于點(diǎn)(π,0(中心對(duì)稱B.y=f(x(圖像關(guān)于直線x=對(duì)稱C.f(x(的最大值為23D.f(x(既是奇函數(shù)又是周期函數(shù)【解析】A:因?yàn)閒(π+x(=cos(π+x(sin[2(π+x([=-cosxsin2x,f(π-x(=cos(π-x(sin[2(π-x([=cosxsin2x,所以f(π+x(=-f(π-x(,B:因?yàn)閒+x(=cos+x(sin|2+x(=sinxsin2x,f-x(=cos-x(sin|2-x(=sinxsin2x,所以f+x(=f-x(,因此y=f(x(圖像關(guān)于直線x=對(duì)稱,所以本選項(xiàng)結(jié)論正確;C:f(x(=cosxsin2x=2sinx.cos2x=2sinx(1-sin2x)=-2sin3x+2sinx,設(shè)sinx=t(-1≤t≤1),所以g(t(=-2t3+2t?g/(t(=-6t2+2=-6(t+t-,當(dāng)-1<t<-時(shí),g/(t(<0,g(t(單調(diào)遞減,當(dāng)-<t<時(shí),g/(t(>0,g(t(單調(diào)遞增,當(dāng)<tt(<0,g(t(單調(diào)遞減,當(dāng)t=時(shí),函數(shù)有極大值,D:因?yàn)閒(-x(=cos(-x(sin[2(-x([=-cosxsin2x=-f(x(,所以f(x(是奇函數(shù),因?yàn)閒(x+2π(=cos(x+2π(sin[2(x+2π([=cosxsin2x=f(x(,所以f(x(是周期函數(shù),因此本選項(xiàng)結(jié)論正確,46.(多選題)(河北省部分地區(qū)2025屆高三上學(xué)期9月摸底考試數(shù)學(xué)試卷)已知數(shù)列{an}滿足an+1=2anA.{an}的通項(xiàng)公式為an=3×2n-1-nC.S2n<0n+1=2an+n-1,則an+1+n+1=2an+2n=2(an+n(,所以{an+n{為公比為2的等比數(shù)列,其中a1+1=3,故an+n=3×2n-1,則an=3×2B選項(xiàng),Tn=a1+a2+a3+…+an=3-1+3×2-2+3×22-3+…+3×2n-1-n=3+3×2+3×22+…+3×2n-1-=3×-=3×2n-3-,B正確;C選項(xiàng),Tn+1-Tn=3×2n+1-3-3×2n-3-=3×2n-1-n,當(dāng)n≥1時(shí),3×2n-1-n>0恒成立,故{Tn{為遞增數(shù)列,且T1=2>0,47.(多選題)(河北省唐山市2024-2025學(xué)年高三上學(xué)期摸底演練數(shù)學(xué)試題)已知雙曲線C:-=1與直線l:y=kx+t(k≠±2(有唯一公共點(diǎn)M,過(guò)點(diǎn)M且與l垂直的直線分別交x軸,y軸于A(m,0(,B(0,n(兩點(diǎn),當(dāng)M運(yùn)動(dòng)時(shí),下面說(shuō)法正確的有()A.k<-2或k>2B.記點(diǎn)P(k,t(,則點(diǎn)P在曲線C上C.直線l與兩漸近線所圍成的面積為定值D.記點(diǎn)Q(m,n(,則點(diǎn)Q的軌跡為【解析】對(duì)A,∵雙曲線C:-=1與直線l:y=kx+t(k≠±2(有唯一公共點(diǎn)M,∴直線l與雙曲線的漸近線平行或者與雙雙曲線C:-=1的漸近線方程為:y=±x=±2x,又∵k≠±2,y=kx+t-y=kx+t即(4-k2(x2-2ktx-t2-16=0,則Δ=4k2t2+4(4-k2((t2+16(=0,即t2-4k2+16=0,故k<-2或k>2,故A對(duì);對(duì)B,由A知:t2-4k2+16=0,設(shè)直線l與雙曲線的漸近線的交點(diǎn)分別為E,F, 直線l與y軸的交點(diǎn)為(0,t(,故直線l與兩漸近線所圍成的面積S=|t|(|xE|+|xF|(=|t||xE-xF|=|t|--=由A知:t2=4k2-16,對(duì)D,由A知:聯(lián)立方程得到:(4-k2(x2-2ktx-t2-16=0,又∵t2=4k2-16,令其中y≠0,下角A走到右上角B共有種不同的走法;若要求從左下角A走到右上角B的過(guò)程中只能在則由卡特蘭數(shù)可知共有C-C=14種不同的走法,連接F2BFB|=2d-2a,2+(2d-2a)2=(4a)2,整理得2--=0,51.(山東省濟(jì)南市2025屆高三上學(xué)期開(kāi)學(xué)摸底考試數(shù)學(xué)試題)數(shù)列{an{滿足a1∈[-1,1[,an+1=2a- -a.T2025的最大值為.∈[-1,1[,an+1=2a-1,n=cosbn,an+1=2a-1=2cos2bn-1=cosbn+1=cos2bn,T3× ===12×cosb2×cosb3×…×cosb20253×cosb3×…×cosb2025…== 1-a.T2025=、1-cos2b1×cosb1×cosb2×cosb3×…×cosb20252026=1,sinb1>0時(shí)取等號(hào).52.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知數(shù)列{an{的前n項(xiàng)和Sn=n2n=n2+n,則當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1(2-(n-1(=2n,n=2n;又y=x+在(1,3(單調(diào)遞減,在(3,+∞(單調(diào)遞增;故當(dāng)n=3時(shí),n+取得最小值,也即n=3時(shí),取得最小值.53.(福建省名校聯(lián)盟2024-2025學(xué)+8 =a+8 =a++a+a +a =4+4b≥4+2((a=a=aab54.(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)對(duì)于任意的x,y∈R,函數(shù)f(x(滿足f(x+y(+f(x-y(=2f(x(f(y(,函數(shù)g(x(滿足g(x+y(=g(x(g(y(.若f(2(=-1,g(3(=8,則g(f(2024((=.【解析】令y=0,得2f(x(=2f(0(f(x(,則f(0(=1或f(x(=0(與f(2(=-1矛盾舍去).令x=y=1,得f(2(+f(0(=2[f(1([2=0,則f(1(=0,則f(x+1(+f(x-1(=0,則f(x+4(=f(x(,則f(2024(=f(0(=1.又因?yàn)間(x+y(=g(x(g(y(,所以g(3(=g(2(g
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化潤(rùn)疆研討發(fā)言材料
- 2025年醫(yī)院醫(yī)保部工作總結(jié)
- 2025年寧波市公安警務(wù)保障服務(wù)中心招聘編外工作人員6人備考題庫(kù)及1套參考答案詳解
- 總工會(huì)和社會(huì)化工會(huì)工作者面試題及參考答案
- 新生兒病例討論
- 2024年昭通市教體系統(tǒng)引進(jìn)專業(yè)技術(shù)人才考試真題
- 2024年安陽(yáng)市公安機(jī)關(guān)招聘留置看護(hù)輔警考試真題
- 2025年上饒市廣信區(qū)人民法院公開(kāi)招聘勞務(wù)派遣工作人員14人備考題庫(kù)有答案詳解
- plc噴泉燈課程設(shè)計(jì)
- 2025 九年級(jí)語(yǔ)文下冊(cè)寫(xiě)作選材典型性課件
- 2025年國(guó)家開(kāi)放大學(xué)(電大)《物理化學(xué)》期末考試備考題庫(kù)及答案解析
- 無(wú)領(lǐng)導(dǎo)小組討論面試技巧與實(shí)戰(zhàn)案例
- 2025年及未來(lái)5年中國(guó)養(yǎng)老產(chǎn)業(yè)行業(yè)發(fā)展趨勢(shì)預(yù)測(cè)及投資規(guī)劃研究報(bào)告
- 2025年中國(guó)辦公樓租戶調(diào)查分析報(bào)告
- 環(huán)保設(shè)備銷售培訓(xùn)
- 髖臼骨折的護(hù)理課件
- 國(guó)際中文教育概論 課件 第12章 國(guó)際中文教育前瞻
- 競(jìng)賽合同(標(biāo)準(zhǔn)版)
- 恒壓供水原理課件
- 商業(yè)物業(yè)管理服務(wù)合同范本解析
- 2025年湖北省綜合評(píng)標(biāo)評(píng)審專家?guī)鞂<铱荚嚉v年參考題庫(kù)含答案詳解(5套)
評(píng)論
0/150
提交評(píng)論