恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

恩施市重點(diǎn)中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.關(guān)于反比例函數(shù),下列說(shuō)法正確的是()A.函數(shù)圖像經(jīng)過(guò)點(diǎn)(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時(shí),函數(shù)值隨著的增大而增大; D.當(dāng)時(shí),.2.將一副三角板和一張對(duì)邊平行的紙條按如圖擺放,兩個(gè)三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個(gè)頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°3.若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線(xiàn)的頂點(diǎn)坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)4.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°5.一個(gè)六邊形的六個(gè)內(nèi)角都是120°(如圖),連續(xù)四條邊的長(zhǎng)依次為1,3,3,2,則這個(gè)六邊形的周長(zhǎng)是()A.13 B.14 C.15 D.166.點(diǎn)P(﹣2,5)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)7.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長(zhǎng)度之比為A. B. C. D.8.如圖,在中,,,,則等于()A. B. C. D.9.為考察兩名實(shí)習(xí)工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個(gè)數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說(shuō)法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差10.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.11.如圖,AB是定長(zhǎng)線(xiàn)段,圓心O是AB的中點(diǎn),AE、BF為切線(xiàn),E、F為切點(diǎn),滿(mǎn)足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線(xiàn)交AE、BF的延長(zhǎng)線(xiàn)于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿(mǎn)足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)12.如圖,A、B、C三點(diǎn)在正方形網(wǎng)格線(xiàn)的交點(diǎn)處,若將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖是一本折扇,其中平面圖是一個(gè)扇形,扇面ABDC的寬度AC是管柄長(zhǎng)OA的一半,已知OA=30cm,∠AOB=120°,則扇面ABDC的周長(zhǎng)為_(kāi)____cm14.如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為位似中心在y軸的左側(cè)將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點(diǎn)B(3,﹣2)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_(kāi)____.15.如圖,折疊長(zhǎng)方形紙片ABCD,先折出對(duì)角線(xiàn)BD,再將AD折疊到BD上,得到折痕DE,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)F,若AB=8,BC=6,則AE的長(zhǎng)為_(kāi)____.16.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書(shū)中有下列問(wèn)題:“今有勾五步,股十二步,問(wèn)勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問(wèn)該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問(wèn)題的答案是______步.17.關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則________.18.如圖,以銳角△ABC的邊AB為直徑作⊙O,分別交AC,BC于E、D兩點(diǎn),若AC=14,CD=4,7sinC=3tanB,則BD=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線(xiàn)與AC的延長(zhǎng)線(xiàn)相交于點(diǎn)P.求證:PD是⊙O的切線(xiàn);求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線(xiàn)段PC的長(zhǎng).20.(6分)如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.21.(6分)已知點(diǎn)E為正方形ABCD的邊AD上一點(diǎn),連接BE,過(guò)點(diǎn)C作CN⊥BE,垂足為M,交AB于點(diǎn)N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點(diǎn),求tan∠ABE.22.(8分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測(cè)旗桿頂部A的仰角為50°,觀測(cè)旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(8分)小馬虎做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.小馬虎看答案以后知道,請(qǐng)你替小馬虎求出系數(shù)“”;在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為.請(qǐng)你替小馬虎求出“”的正確答案.24.(10分)某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門(mén)統(tǒng)計(jì)繪制出2018年春節(jié)期間旅游情況統(tǒng)計(jì)圖(如圖),根據(jù)圖中信息解答下列問(wèn)題:(1)2018年春節(jié)期間,該市A、B、C、D、E這五個(gè)景點(diǎn)共接待游客人數(shù)為多少?(2)扇形統(tǒng)計(jì)圖中E景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是,并補(bǔ)全條形統(tǒng)計(jì)圖.(3)甲,乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中隨機(jī)選擇一個(gè),求這兩個(gè)旅行團(tuán)選中同一景點(diǎn)的概率.25.(10分)先化簡(jiǎn),再求值:,其中x為方程的根.26.(12分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類(lèi)花苗,園林部門(mén)從種植的這批花苗中隨機(jī)抽取了2000株,將四類(lèi)花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類(lèi)花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問(wèn)題:扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為,并補(bǔ)全條形統(tǒng)計(jì)圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門(mén)決定明年從這四類(lèi)花苗中選兩類(lèi)種植,請(qǐng)用列表法或畫(huà)樹(shù)狀圖求恰好選到成活率較高的兩類(lèi)花苗的概率.27.(12分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買(mǎi)一批足球,已知購(gòu)買(mǎi)2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買(mǎi)4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.求A,B兩種品牌的足球的單價(jià).求該校購(gòu)買(mǎi)20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過(guò)點(diǎn)(2,-2),故此選項(xiàng)錯(cuò)誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項(xiàng)錯(cuò)誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時(shí),函數(shù)值y隨著x的增大而增大,故此選項(xiàng)正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時(shí),y>-4,故此選項(xiàng)錯(cuò)誤;故選C.【點(diǎn)睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.2、A【解析】試題分析:如圖,過(guò)A點(diǎn)作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點(diǎn):平行線(xiàn)的性質(zhì).3、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點(diǎn)坐標(biāo).詳解:當(dāng)或時(shí),,當(dāng)時(shí),,,解得,二次函數(shù)解析式為,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.4、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.5、C【解析】

解:如圖所示,分別作直線(xiàn)AB、CD、EF的延長(zhǎng)線(xiàn)和反向延長(zhǎng)線(xiàn)使它們交于點(diǎn)G、H、I.因?yàn)榱呅蜛BCDEF的六個(gè)角都是120°,所以六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長(zhǎng)為3+1+4+2+2+3=15;故選C.6、D【解析】

根據(jù)關(guān)于y軸對(duì)稱(chēng)點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案.【詳解】點(diǎn)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為,故選:D.【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中點(diǎn)的對(duì)稱(chēng),熟練掌握點(diǎn)的對(duì)稱(chēng)特點(diǎn)是解決本題的關(guān)鍵.7、B【解析】

在兩個(gè)直角三角形中,分別求出AB、AD即可解決問(wèn)題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問(wèn)題.8、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點(diǎn)睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.9、D【解析】

分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進(jìn)行求解后進(jìn)行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項(xiàng)正確,故選D.【點(diǎn)睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.10、C【解析】

過(guò)點(diǎn)A作AF⊥DE于F,根據(jù)角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過(guò)點(diǎn)A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等可得AF=AB.11、C【解析】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線(xiàn),利用切線(xiàn)的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線(xiàn)合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線(xiàn)長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線(xiàn),得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線(xiàn),∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線(xiàn)長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿(mǎn)足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線(xiàn)長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).12、D【解析】

過(guò)C點(diǎn)作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問(wèn)題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過(guò)C點(diǎn)作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對(duì)應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1π+1.【解析】分析:根據(jù)題意求出OC,根據(jù)弧長(zhǎng)公式分別求出AB、CD的弧長(zhǎng),根據(jù)扇形周長(zhǎng)公式計(jì)算.詳解:由題意得,OC=AC=OA=15,的長(zhǎng)==20π,的長(zhǎng)==10π,∴扇面ABDC的周長(zhǎng)=20π+10π+15+15=1π+1(cm),故答案為1π+1.點(diǎn)睛:本題考查的是弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式:是解題的關(guān)鍵.14、(-,1)【解析】

根據(jù)如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或?k進(jìn)行解答.【詳解】解:∵以原點(diǎn)O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點(diǎn)B(3,?2)則點(diǎn)B(3,?2)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為:(-,1),故答案為(-,1).【點(diǎn)睛】本題考查了位似變換:位似圖形與坐標(biāo),在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或?k.15、3【解析】

先利用勾股定理求出BD,再求出DF、BF,設(shè)AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問(wèn)題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設(shè)AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理等知識(shí),解題時(shí),我們常常設(shè)要求的線(xiàn)段長(zhǎng)為x,然后根據(jù)折疊和軸對(duì)稱(chēng)的性質(zhì)用含x的代數(shù)式表示其他線(xiàn)段的長(zhǎng)度,選擇適當(dāng)?shù)闹苯侨切危\(yùn)用勾股定理列出方程求出答案.16、.【解析】

如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.17、-1.【解析】

根據(jù)根的判別式計(jì)算即可.【詳解】解:依題意得:∵關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點(diǎn)睛】本題考查了一元二次方程根的判別式,當(dāng)=>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)==0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)=<0時(shí),方程無(wú)實(shí)數(shù)根.18、1【解析】如圖,連接AD,根據(jù)圓周角定理可得AD⊥BC.在Rt△ADC中,sinC=ADAC;在Rt△ABD中,tanB=ADBD.已知7sinC=3tanB,所以7×ADAC=3×ADBD,又因點(diǎn)睛:此題主要考查的是圓周角定理和銳角三角函數(shù)的定義,以公共邊AD為橋梁,利用銳角三角函數(shù)的定義得到tanB和sinC的式子是解決問(wèn)題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線(xiàn);(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點(diǎn)睛】本題考查了切線(xiàn)的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線(xiàn)的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.20、見(jiàn)解析【解析】

(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問(wèn)題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.21、(1)證明見(jiàn)解析;(2)1【解析】

(1)根據(jù)正方形的性質(zhì)得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線(xiàn)和三角形內(nèi)角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點(diǎn),∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、三角形的內(nèi)角和定理、垂線(xiàn)、全等三角形的性質(zhì)和判定以及銳角三角函數(shù)等知識(shí)點(diǎn)的掌握和理解,證出△ABE≌△BCN是解此題的關(guān)鍵.22、7.6m.【解析】

利用CD及正切函數(shù)的定義求得BC,AC長(zhǎng),把這兩條線(xiàn)段相減即為AB長(zhǎng)【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,正確應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.23、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】

(1)根據(jù)整式加減法則可求出二次項(xiàng)系數(shù);(2)表示出多項(xiàng)式,然后根據(jù)的結(jié)果求出多項(xiàng)式,計(jì)算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數(shù)為-3.(2)A+C=,且A=,C=4,AC=【點(diǎn)睛】本題主要考查了多項(xiàng)式加減運(yùn)算,熟練掌握運(yùn)算法則是解題關(guān)鍵.24、(1)50萬(wàn)人;(2)43.2°;統(tǒng)計(jì)圖見(jiàn)解析(3).【解析】

(1)根據(jù)A景點(diǎn)的人數(shù)以及百分比進(jìn)行計(jì)算即可得到該市景點(diǎn)共接待游客數(shù);(2)先用360°乘以E的百分比求得E景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù),再根據(jù)B、D景點(diǎn)接待游客數(shù)補(bǔ)全條形統(tǒng)計(jì)圖;(3)根據(jù)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中各選擇一個(gè)景點(diǎn),畫(huà)出樹(shù)狀圖,根據(jù)概率公式進(jìn)行計(jì)算,即可得到同時(shí)選擇去同一景點(diǎn)的概率.【詳解】解:(1)該市景點(diǎn)共接待游客數(shù)為:15÷30%=50(萬(wàn)人);(2)扇形統(tǒng)計(jì)圖中E景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是:×360°=43.2°,B景點(diǎn)的人數(shù)為50×24%=12(萬(wàn)人)、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論