版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁南京審計(jì)大學(xué)《大數(shù)據(jù)量化綜合實(shí)驗(yàn)》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表較為合適?()A.樹形圖B.旭日?qǐng)DC.和弦圖D.以上都是2、對(duì)于一個(gè)存在異常值的數(shù)據(jù)集合,以下哪種描述性統(tǒng)計(jì)量對(duì)異常值較為敏感?()A.中位數(shù)B.眾數(shù)C.均值D.四分位數(shù)3、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小4、對(duì)于一個(gè)包含時(shí)間戳的數(shù)據(jù),若要按照時(shí)間順序進(jìn)行分組并計(jì)算每組的統(tǒng)計(jì)量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進(jìn)行分組C.先對(duì)時(shí)間戳進(jìn)行排序,再進(jìn)行分組D.以上方法都可行5、在處理文本數(shù)據(jù)時(shí),除了常見的英文文本,還可能涉及到其他語言。假設(shè)我們要分析中文文本,以下哪個(gè)步驟在中文文本處理中可能與英文文本處理有所不同?()A.分詞B.詞干提取C.停用詞處理D.以上都是6、在處理不平衡數(shù)據(jù)集時(shí),即某些類別樣本數(shù)量遠(yuǎn)少于其他類別,以下關(guān)于數(shù)據(jù)分析方法的調(diào)整,哪一項(xiàng)是最有效的?()A.直接使用常規(guī)的分類算法,不做特殊處理B.對(duì)少數(shù)類樣本進(jìn)行過采樣,增加其數(shù)量C.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量D.以上三種方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)進(jìn)行優(yōu)化7、在數(shù)據(jù)分析中,社交網(wǎng)絡(luò)分析用于研究人與人之間的關(guān)系。假設(shè)要分析一個(gè)社交網(wǎng)絡(luò)中用戶的影響力,以下關(guān)于社交網(wǎng)絡(luò)分析的描述,哪一項(xiàng)是不正確的?()A.中心性指標(biāo),如度中心性、介數(shù)中心性和接近中心性,可以衡量節(jié)點(diǎn)在網(wǎng)絡(luò)中的重要性B.社區(qū)發(fā)現(xiàn)算法可以將網(wǎng)絡(luò)劃分為不同的社區(qū),揭示潛在的群體結(jié)構(gòu)C.社交網(wǎng)絡(luò)分析只關(guān)注節(jié)點(diǎn)之間的連接關(guān)系,不考慮節(jié)點(diǎn)的屬性信息D.可以通過傳播模型來模擬信息在社交網(wǎng)絡(luò)中的傳播過程8、數(shù)據(jù)分析在市場(chǎng)營銷中有著廣泛的應(yīng)用。假設(shè)一家公司想要評(píng)估不同廣告渠道的效果。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營銷中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過A/B測(cè)試比較不同廣告版本的效果,確定最優(yōu)方案B.客戶細(xì)分能夠幫助企業(yè)針對(duì)不同客戶群體制定個(gè)性化的營銷策略C.僅僅依靠數(shù)據(jù)分析就能夠完全了解客戶的需求和行為,無需進(jìn)行市場(chǎng)調(diào)研D.數(shù)據(jù)分析可以監(jiān)測(cè)營銷活動(dòng)的效果,及時(shí)調(diào)整策略,提高投資回報(bào)率9、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)采樣是一種常見的技術(shù)。假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取樣本進(jìn)行分析,以下關(guān)于數(shù)據(jù)采樣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)采樣能夠保證每個(gè)數(shù)據(jù)點(diǎn)被抽取的概率相等,具有較好的代表性B.分層采樣可以根據(jù)某些特征將數(shù)據(jù)集分層,然后從各層中抽取樣本,以確保樣本的多樣性C.采樣的樣本量越大,分析結(jié)果就越接近總體的真實(shí)情況,但也會(huì)增加計(jì)算成本D.數(shù)據(jù)采樣可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的分布和特征10、數(shù)據(jù)分析在當(dāng)今的各個(gè)領(lǐng)域都發(fā)揮著重要作用。在數(shù)據(jù)收集階段,以下關(guān)于數(shù)據(jù)質(zhì)量的描述,不準(zhǔn)確的是()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性和時(shí)效性等多個(gè)方面B.高質(zhì)量的數(shù)據(jù)能夠?yàn)楹罄m(xù)的分析提供可靠的基礎(chǔ),確保分析結(jié)果的有效性C.數(shù)據(jù)收集時(shí)只需要關(guān)注數(shù)據(jù)的數(shù)量,質(zhì)量問題可以在后續(xù)的分析中進(jìn)行處理和修正D.為了保證數(shù)據(jù)質(zhì)量,需要在收集過程中制定明確的數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范,并進(jìn)行有效的數(shù)據(jù)驗(yàn)證11、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖12、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡(jiǎn)單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對(duì)于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合13、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性14、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的選擇很重要。以下關(guān)于數(shù)據(jù)挖掘算法選擇的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的選擇應(yīng)根據(jù)數(shù)據(jù)的特點(diǎn)、分析目的和計(jì)算資源等因素來確定B.不同的數(shù)據(jù)挖掘算法適用于不同類型的數(shù)據(jù)和問題,沒有一種算法是萬能的C.選擇數(shù)據(jù)挖掘算法時(shí),可以參考其他類似項(xiàng)目的經(jīng)驗(yàn),但不能完全照搬D.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,其他因素如計(jì)算效率等可以忽略不計(jì)15、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求16、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計(jì)值C.對(duì)重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問題,直接進(jìn)行分析17、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過程,無法進(jìn)行血緣追蹤B.簡(jiǎn)單地記錄部分?jǐn)?shù)據(jù)的來源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過程,以便清晰地了解數(shù)據(jù)的來龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對(duì)數(shù)據(jù)分析沒有幫助18、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題的根源可能來自多個(gè)方面。以下關(guān)于數(shù)據(jù)質(zhì)量問題根源的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問題可能源于數(shù)據(jù)采集過程中的錯(cuò)誤和不規(guī)范B.數(shù)據(jù)質(zhì)量問題可能由于數(shù)據(jù)存儲(chǔ)和管理不善導(dǎo)致C.數(shù)據(jù)質(zhì)量問題可能是由于數(shù)據(jù)分析方法不當(dāng)引起的D.數(shù)據(jù)質(zhì)量問題只與數(shù)據(jù)本身有關(guān),與數(shù)據(jù)處理的過程和人員無關(guān)19、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個(gè)指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)20、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問控制和審計(jì)等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來確定不同的安全級(jí)別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評(píng)估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅21、數(shù)據(jù)分析中的文本分析用于處理非結(jié)構(gòu)化的文本數(shù)據(jù)。假設(shè)要從大量的客戶評(píng)論中提取關(guān)鍵信息和情感傾向,以下關(guān)于文本分析方法的描述,正確的是:()A.僅使用簡(jiǎn)單的關(guān)鍵詞計(jì)數(shù),不考慮文本的語義和語境B.不進(jìn)行文本的預(yù)處理和清洗,直接應(yīng)用分析算法C.采用自然語言處理技術(shù),包括詞法分析、句法分析、情感分析等,對(duì)文本進(jìn)行預(yù)處理、特征提取和建模,以準(zhǔn)確理解和挖掘文本中的信息D.認(rèn)為文本分析結(jié)果一定準(zhǔn)確可靠,不需要人工驗(yàn)證和修正22、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲(chǔ)引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive23、在進(jìn)行數(shù)據(jù)倉庫設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)一個(gè)企業(yè)有大量的銷售、庫存和客戶數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉庫?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型24、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)25、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架26、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇對(duì)于圖表的可讀性有很大影響。以下關(guān)于顏色選擇的原則,錯(cuò)誤的是?()A.避免使用過于鮮艷的顏色B.使用對(duì)比強(qiáng)烈的顏色區(qū)分不同的數(shù)據(jù)C.隨意選擇顏色,只要美觀D.考慮色盲人群的可辨識(shí)度27、在數(shù)據(jù)分析的市場(chǎng)調(diào)研中,假設(shè)要了解消費(fèi)者對(duì)新產(chǎn)品的偏好和需求。以下哪種數(shù)據(jù)收集方法可能獲得更深入和真實(shí)的反饋?()A.在線調(diào)查問卷B.面對(duì)面訪談C.電話調(diào)查D.不進(jìn)行調(diào)研,依靠以往經(jīng)驗(yàn)推測(cè)28、在進(jìn)行數(shù)據(jù)清洗時(shí),發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動(dòng)篩選B.使用數(shù)據(jù)庫的去重功能C.隨機(jī)刪除一部分重復(fù)記錄D.對(duì)重復(fù)記錄進(jìn)行合并29、某電商平臺(tái)想要了解商品銷量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化30、數(shù)據(jù)分析中的模型評(píng)估不僅包括在訓(xùn)練集上的表現(xiàn),還需要在測(cè)試集上進(jìn)行驗(yàn)證。假設(shè)我們?cè)谟?xùn)練一個(gè)模型時(shí),發(fā)現(xiàn)訓(xùn)練集上的準(zhǔn)確率很高,但測(cè)試集上的準(zhǔn)確率很低,以下哪種情況可能導(dǎo)致了這種過擬合現(xiàn)象?()A.模型過于復(fù)雜B.訓(xùn)練數(shù)據(jù)量不足C.特征選擇不當(dāng)D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)分析在電信運(yùn)營商的用戶通話和流量使用數(shù)據(jù)中,如何進(jìn)行用戶行為分析,推出個(gè)性化的套餐和增值服務(wù)。2、(本題5分)在社交電商領(lǐng)域,用戶的社交關(guān)系數(shù)據(jù)、購物分享數(shù)據(jù)等逐漸增多。分析如何借助數(shù)據(jù)分析手段,如社交影響力評(píng)估、商品推薦優(yōu)化等,促進(jìn)社交電商的發(fā)展,同時(shí)探討在數(shù)據(jù)隱私保護(hù)、社交關(guān)系動(dòng)態(tài)變化和商品質(zhì)量把控方面可能面臨的問題及應(yīng)對(duì)方法。3、(本題5分)在金融市場(chǎng)的高頻交易風(fēng)險(xiǎn)管理中,如何運(yùn)用數(shù)據(jù)分析監(jiān)控交易速度和風(fēng)險(xiǎn)敞口,確保交易的穩(wěn)定性和合規(guī)性。4、(本題5分)在物流供應(yīng)鏈中,供應(yīng)商績(jī)效評(píng)估和采購決策需要數(shù)據(jù)分析。以某制造企業(yè)為例,論述如何運(yùn)用數(shù)據(jù)分析來選擇優(yōu)質(zhì)供應(yīng)商、優(yōu)化采購成本、確保供應(yīng)鏈的穩(wěn)定性,以及如何處理供應(yīng)鏈中的數(shù)據(jù)延遲和不確定性。5、(本題5分)在金融監(jiān)管領(lǐng)域,金融機(jī)構(gòu)的交易數(shù)據(jù)、合規(guī)數(shù)據(jù)等不斷被監(jiān)測(cè)和收集。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如風(fēng)險(xiǎn)監(jiān)測(cè)模型構(gòu)建、違規(guī)行為識(shí)別等,加強(qiáng)金融監(jiān)管,維護(hù)金融市場(chǎng)穩(wěn)定,同時(shí)分析在數(shù)據(jù)海量復(fù)雜、監(jiān)管政策變化和跨機(jī)構(gòu)數(shù)據(jù)整合方面的挑戰(zhàn)及解決辦法。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程,包括特征提取、選擇和構(gòu)建的方法,以及它們對(duì)模型性能的影響。2、(本題5分)在進(jìn)行時(shí)間序列數(shù)據(jù)分析時(shí),常用的預(yù)測(cè)方法有哪些?請(qǐng)?jiān)敿?xì)說明這些方法的特點(diǎn)和適用場(chǎng)景。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的魯棒性評(píng)估,包括對(duì)噪聲、異常值和缺失值的容忍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療招標(biāo)應(yīng)急預(yù)案(3篇)
- 2026年無人駕駛在最后一公里物流創(chuàng)新報(bào)告
- pvc墻面施工方案(3篇)
- 天道屋面施工方案(3篇)
- 溝渠快速施工方案(3篇)
- 應(yīng)急預(yù)案管理目錄(3篇)
- 地基基礎(chǔ)沉降監(jiān)測(cè)及修復(fù)技術(shù)總結(jié)
- 2025年生鮮預(yù)包裝O2O模式創(chuàng)新報(bào)告
- 班級(jí)烈士活動(dòng)策劃方案(3篇)
- 電廠變頻施工方案(3篇)
- 背債人貸款中介合同協(xié)議
- 浙江省寧波市2024-2025學(xué)年高三上學(xué)期期末模擬檢測(cè)語文試題(原卷版+解析版)
- 生態(tài)修復(fù)技術(shù)集成-深度研究
- 中小企業(yè)專利質(zhì)量控制指引編制說明
- 旅游行業(yè)安全風(fēng)險(xiǎn)管控與隱患排查方案
- DL-T5418-2009火電廠煙氣脫硫吸收塔施工及驗(yàn)收規(guī)程
- 復(fù)方蒲公英注射液在痤瘡中的應(yīng)用研究
- 高考數(shù)學(xué)專題:導(dǎo)數(shù)大題專練(含答案)
- 腘窩囊腫的關(guān)節(jié)鏡治療培訓(xùn)課件
- 淮安市2023-2024學(xué)年七年級(jí)上學(xué)期期末歷史試卷(含答案解析)
- 課件:曝光三要素
評(píng)論
0/150
提交評(píng)論