版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
等比數(shù)列提高練
2025年高考數(shù)學(xué)一輪復(fù)習(xí)備考
一、單選題
1.已知{%}是等比數(shù)列,且。2%=-。8=Tq,則生=()
A.-72B.±6C.-2D.±2
2.已知等比數(shù)列{〃〃}的前〃項(xiàng)和為S〃,S2=4,且53=4。2+。1,則$4二()
A.120B.40C.48D.60
x+L〃為奇數(shù)
3.已知數(shù)(列%的前w項(xiàng)和為S“,且滿足6=1,4用=/'班倬物,貝|耳。。=()
[2%,成9偶數(shù)
A.3X251-156B.3x251-103C.3x250-156D.3x250-103
4.某人從銀行貸款100萬,貸款月利率為0.5%,20年還清,約定采用等額本息按月還款(即每個(gè)月還
相同數(shù)額的款,240個(gè)月還清貸款的利息與本金),則每月大約需還款()(參考數(shù)據(jù):1.00524。。3.310
A.7265元B.7165元C.7365元D.7285元
5.已知數(shù)列{〃“}滿足」一=1--1--1—23
且貝!1。1011二()
an+\3%3,
1011O1010z\1010
AAroB31011
-MC______
1+31011,1+31010
6.已知等比數(shù)列{%}的前〃項(xiàng)和為=30,S4=120,則其公比鄉(xiāng)=()
A.1B.2C.3D.-3
7.在各項(xiàng)均為正數(shù)的等比數(shù)列{4}中,若a2a4+2a3a5+a4a6=16,貝U4+%=()
A.1B.2C.3D.4
8.已知正項(xiàng)等比數(shù)列{q,}的前”項(xiàng)和為S",若邑=4,則邑+S6的最小值為()
A.8B.872-4C.8A/2D.10
二、多選題
9.設(shè)等比數(shù)列{%}的公比為4,其前〃項(xiàng)和為%前〃項(xiàng)積為Tn,并滿足條件q>1,?2022a2023>1,
Z7—1
&37<。,下列結(jié)論正確的是()
。2023T
A.^2022<§2023B.。2022〃2024一1<°
C.心必是數(shù)列{瑁中的最大值D.數(shù)列{瑁無最大值
10.在等比數(shù)列{4}中,%>1,“2023”2024>0,冬吟■<(),若凡為{%}的前〃項(xiàng)和,7;為{4}的前
“2023-,
〃項(xiàng)積,貝!J()
A.{4}為單調(diào)遞增數(shù)列B.52023<52024
C.4023為{瑁的最大項(xiàng)D.{瑁無最大項(xiàng)
11.設(shè)公比為q的等比數(shù)列{%}的前〃項(xiàng)和為S,,前〃項(xiàng)積為T,,且4>1,%。23出必>1,0y<0,
“20241
則下列結(jié)論正確的是()
A.。<4<1B.512023‘2024—1>。
C.罩24是數(shù)列{1}中的最大值D.心23是數(shù)列{Z,}中的最小值
12.在《增刪算法統(tǒng)宗》中有如下問題:“三百七十八里關(guān),初行健步不為難;次日腳痛減一半,六
朝才得到其關(guān)”,其意思是:“某人到某地需走378里路,第一天健步行走,從第二天起腳痛每天走的
路程為前一天的一半,走了6天才到達(dá)目的地”,記此人中間兩天走的路程之和為中間四天走的
路程之積為N,則下列說法正確的是()
A.此人第一天走了全程的一半
B.此人第五天和第六天共走了18里路
C.5/<378
D.N=1152?
三、填空題
13.已知數(shù)列{。〃}是等比數(shù)列,且。3+。5=3,則。2。4+2說+%。6的值為.
14.已知{4}是正項(xiàng)等比數(shù)列,若4人=抬,則'+(的最小值等于.
15.已知一個(gè)等比數(shù)列首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),其奇數(shù)項(xiàng)之和為341,偶數(shù)項(xiàng)之和為682,則這個(gè)數(shù)
列的項(xiàng)數(shù)為
16.設(shè)S“為數(shù)列{%}的前”項(xiàng)和,且S,=3q-1乂〃eN*),數(shù)列也}的通項(xiàng)公式為6“=4?+3(?cN*),
將數(shù)列{4}與{〃}的公共項(xiàng)按它們?cè)谠瓉頂?shù)列中的先后順序排成一個(gè)新數(shù)列{4},數(shù)列{4}的通項(xiàng)公
式為.
四、解答題
?!ㄒ?,幾二2左一1,左GZ
17.已知數(shù)列{4}滿足%=T,an+l=<a?_
,t'l—ZK,K£/1
I2
⑴若2=%T+2,證明:數(shù)列也}為等比數(shù)列;
⑵求數(shù)列{““}的前2”項(xiàng)和$2..
18.記S,為公比不為1的等比數(shù)列{%}的前〃項(xiàng)和,=-8g+84,臬=21.
(1)求{%}的通項(xiàng)公式;
⑵設(shè)%=182。3若由{叫與也}的公共項(xiàng)從小到大組成數(shù)列{g},求數(shù)列{%}的前〃項(xiàng)和T”.
19.已知等比數(shù)列的前〃項(xiàng)和為S“,q=1,且{S“+l}也是等比數(shù)列.
(1)求{即}的通項(xiàng)公式;
(2)若2=a?-log2a?+1(neN*),求數(shù)列也}的前?項(xiàng)和&
參考答案:
1.C
設(shè)等比數(shù)列{廝}的公比為4,因?yàn)?%=-4%,所以-〃應(yīng)4=-4%,
得到/=4,所以/=2,由。2%=-4%,得到色■'/"二與生9,
一q
4
所以。3=-r=-2,
Q
2.B
因?yàn)閿?shù)列{4}為等比數(shù)列,設(shè)數(shù)列的公比為9,
若4=1,則%=%,
此時(shí)S3=3%,由已知邑=4〃2+%=5〃i,即5%=3%,
解得q=0,不成立,所以“wl;
因?yàn)镾?=4,S3=4g+4,
a,=4
則有:2/,解得4=3,%=1,
%+%q+axq=4%q+%
%(1_力「34
所以84=——m?
l-q1-3
3.A
\an+1,”為奇數(shù)
因?yàn)閝=l,an+i匕4,"為偶數(shù)
所以3+2=41+1=2心+1,=2出《=2a2i+2,%eN*,且9=2,
所以a2k+2+%k+l=2(o2A+)+3,
記2=。2“+。2”一1,〃21,則2+1=22+3,所以我+]+3=2(。+3),
所以也+3}是以4+3=4+1+3=6為首項(xiàng),2為公比的等比數(shù)列,
所以2+3=6x2i,2=6義2"一1一3,
記{與}的前〃項(xiàng)和為4,貝UH0a=公。=(6*2°+6x2+6x2?+…+6x249)-3*50=3x251-156.
4.B
設(shè)每月需還款。萬元,
第一期還款后,還欠銀行%=100x1.005-a萬元,
第二期還款后,還欠銀行a2=(100x1.005-G)X1.005-a萬元,
設(shè)第”期還款后,還欠銀行%萬元,則出4。=0,且%=1。。5a“-—a,
所以{4一200a}是公比為1.005的等比數(shù)列,所以a“=L005"T(100.5-201。)+200”.
1005
令電4。=。,解得a=2(100524。-*07165,即每月大約需還款7165元.
5.C
1112311121
因?yàn)椤?T.一+1,又的=:,令〃=1,可得一=£X—+公,解得卬=彳,
??1
+3%34a23a}32
所以L-1=1
%3
所以數(shù)列]是以^T=l為首項(xiàng),〈為公比的等比數(shù)歹!J,
值J43
1(1、凡T-1olOlO
所以2T=,整理得―占,故%。“=備而
6.C
設(shè)等比數(shù)列{%}的公比為4,
因?yàn)?+〃3=30,邑=120,若4=1,由q+〃3=30,得到4〃=4=15,不滿足84=120,所以qwl,
由弓+生=30,得到%(1+/)=30①,由邑=120,得到空匕心=120②,
i-q
%(i+q~)_1]J
由①一②得人工5-Z,整理得到『=解得4=3,
1-qq
7.D
由a2a4+2。3a5+。4a6=16得a;+2/。5+城=16,即(生+4)?=ig,
因?yàn)榈缺葦?shù)列{0}各項(xiàng)均為正數(shù),所以%+%=4,
8.B
由正項(xiàng)等比數(shù)列{4}可知S2,s4-s2,S6-S4成等比數(shù)列,
16
貝U(S4—S2)92=S(S6—SJ,又$4=4,所以56=3十邑一4,
所以S2+S6=3+2S2-4N8夜-4,當(dāng)且僅當(dāng)不=2邑,即&=2及時(shí)取等號(hào),
故邑+06的最小值為8及-4.
9.AB
0
由詈三<可得(生。22一1)(%。23-1)<0,
由“2022”2023=%022鄉(xiāng)>17r矢口,9>°,
當(dāng)qNl時(shí),貝lj“202221,“2023>1,(%02211)(為023-1)<。不成",
故0V4V1,目.“2022>1,。<“2023<1,故*^2023^2022,A正確;
%022%024-1二“2023-1<°,B;
n。22是數(shù)列{方}中的最大值,C,D錯(cuò)誤.
10.BC
由〃2023〃2024=〃2023乂〃2023*0=%()23Xq>0,因止匕Q>。.
又因?yàn)?>1貝!)?!?gt;。.
當(dāng)鄉(xiāng)21時(shí),%=aq〃T>l,則出023>1,生024>1,貝IJa經(jīng)三〉0,與題意矛盾.
〃20231
因此。<3<1.則{%}為單調(diào)遞減數(shù)列,故選項(xiàng)A錯(cuò)誤.
而邑024—邑023="2024>。,故^2023<邑024,選項(xiàng)B正確.
又因?yàn)椋?}為單調(diào)遞減數(shù)列,則“2023>“2024,
由~T<°可知,”2023>1,。<“2024<,
〃202311
所以當(dāng)“W2O23時(shí),?=4>1,則(Xi.
1n-l
當(dāng)九〉2023時(shí),廣=?!?lt;1,則Hv射.
1n-l
因此{北}的最大項(xiàng)為5023,則選項(xiàng)C正確,選項(xiàng)D錯(cuò)誤.
11.AB
當(dāng)9<。時(shí),則。2023a2024=域0239V0,不合乎題意;
當(dāng)時(shí),對(duì)任意的〃$N*,4=q/T>0,且有—二qNl,
an
可得"〃+1?,可得"20242。202324>1,此時(shí)>°,
“2024~1
與題干不符,不合乎題意;故故A正確;
對(duì)任意的weN*,。,=句>0,且有&a=4<1,可得。向<?!?
an
此時(shí),數(shù)列{%}為單調(diào)遞減數(shù)列,則。2023>出024,
Q—1
結(jié)合2°2[<°可得0<%024<1<?2023,
“2024一1
結(jié)合數(shù)列的單調(diào)性可得%>1(〃W2023),。vqv1(〃22024),
故S2023>2023a2023>2023>1,S2024=52023+a2024>2023>1,
??^2024>^2023>1nS2024s2023—1>°,故B正確;
因?yàn)?。?024<1<出023,數(shù)列{?!ǎ秊閱握{(diào)遞減數(shù)列,
所以4)23是數(shù)歹U{北}中的最大值,故CD錯(cuò)誤.
12.BCD
設(shè)此人第〃天走了里路,則數(shù)列{〃“}是首項(xiàng)為6,公比為q=g的等比數(shù)歹U;
6
已知六天走的路程總和為56_(?)
4解得;
二378,q=192
1一9
19296
對(duì)于A,此人第一天走了全程的巖=瞪,大于全程的一半,即A錯(cuò)誤;
3/0189
對(duì)于B,可得%+4=18,即B正確;
對(duì)于C,中間兩天走的路程之和為M==192x(;)+192x[g)=72,
則5"=360<378,即C正確;
對(duì)于D,中間四天走的路程之積為N=的/%%=96x48x24義12=(48x24)2=11522,可知D正確;
13.9
由等比數(shù)列的性質(zhì)知:。2。4="3,&=。3“5,。4。6=。5,
所以4為++a4a6=〃;+Z%%+";=(%+%)‘又〃3+%=3,
所以〃2%+2%2+W6=9.
故答案為:9
3
14.-/0.75
4
上2r/日,21If21\、1<52〃mV5+.212幾m13
由〃/〃二。3可得機(jī)+〃=6,所以一+丁=[一+丁(根+〃)=[不+―+丁戶工~A——=],
m2no2nJ612m2n)612\m2nJ4
當(dāng)且僅當(dāng)2臼%=t*n時(shí),即根=4,〃=2時(shí),取等號(hào),故2的1最小3值為:,
m2nm2n4
3
故答案為:—
4
15.10
設(shè)等比數(shù)列項(xiàng)數(shù)為〃項(xiàng),公比為4,則%+。3+.?,+?!?1=341,4+&+???+〃”=682,
a=
由生+。4+???+〃〃—+???+n-iQ+/+???+〃〃—1)4=340=682,
(2口
12
解得4=2,因?yàn)橥?火,…Mi是公比為=4的等比數(shù)列,則"I~q},
i-q
即匕2=341,解得九=10,
1-4
故答案為:1。
2n+1
16.dn=3
03
由Sn=-[an-1)(?eN*),可得%=S1=-1),
解得%=3,
33
當(dāng)〃N2時(shí),an=Sn-Sn_},
即an=3a,T,
可得數(shù)列{4}是首項(xiàng)和公比均為3的等比數(shù)列,
所以?!?3",
設(shè)%=3"是也}的第冽項(xiàng),則4帆+3=31匕zneN*),
因?yàn)橐?i=3"i=3x3丘=3x(4m+3)=4(3m+2)+l,
所以%+i不是他,}中的項(xiàng),
因?yàn)橐?2=3-2=9x3*=9x(4/77+3)=4(9777+6)+3,
所以《+2是{2}中的項(xiàng),
所以4=/,”2=。5,4=。2"+1
所以4=3"[〃eN)
故答案為:d“=32"+peN*).
17.(1)證明見解析
(2)4-2z-"-6〃
(1)由題意,得%2=:2"-1)+1=%"-1—2,。2"+1=,
故的"+1=5(。2"-1-2)=]。2"-1-1,
2
所以?2?+1+=1(?2?-1+2),即%=口",
又4=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六一游樂活動(dòng)策劃方案(3篇)
- 施工現(xiàn)場(chǎng)施工機(jī)械設(shè)備管理制度
- 罕見腫瘤的個(gè)體化治療長(zhǎng)期生存數(shù)據(jù)分析與治療策略優(yōu)化
- 2026屆四川省成都市金牛區(qū)外國(guó)語學(xué)校數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題含解析
- 2026新疆兵團(tuán)第十三師淖毛湖農(nóng)場(chǎng)幼兒園招聘編外教師備考題庫(1人)有答案詳解
- 2026內(nèi)蒙古錫林郭勒盟西烏珠穆沁旗招聘醫(yī)療衛(wèi)生專業(yè)技術(shù)人員48人備考題庫及參考答案詳解一套
- 2026上半年貴州事業(yè)單位聯(lián)考玉屏侗族自治縣招聘41人備考題庫完整答案詳解
- 行管局管理財(cái)務(wù)制度
- 紀(jì)委涉案款專戶財(cái)務(wù)制度
- 財(cái)務(wù)制度設(shè)計(jì)具體流程
- 蘋果電腦macOS效率手冊(cè)
- D700-(Sc)13-尼康相機(jī)說明書
- T-CHAS 20-3-7-1-2023 醫(yī)療機(jī)構(gòu)藥事管理與藥學(xué)服務(wù) 第3-7-1 部分:藥學(xué)保障服務(wù) 重點(diǎn)藥品管理 高警示藥品
- 2022年版 義務(wù)教育《數(shù)學(xué)》課程標(biāo)準(zhǔn)
- 供貨保障方案及應(yīng)急措施
- 建設(shè)工程施工專業(yè)分包合同(GF-2003-0213)
- TOC基本課程講義學(xué)員版-王仕斌
- 初中語文新課程標(biāo)準(zhǔn)與解讀課件
- 中建通風(fēng)與空調(diào)施工方案
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
- 高考語言運(yùn)用題型之長(zhǎng)短句變換 學(xué)案(含答案)
評(píng)論
0/150
提交評(píng)論