版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
/2024屆高三數(shù)學(xué)第二學(xué)期模擬考試一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.復(fù)數(shù)與下列復(fù)數(shù)相等的是()A. B.C. D.【答案】B【解析】【分析】應(yīng)用復(fù)數(shù)的除法化簡(jiǎn),結(jié)合復(fù)數(shù)的三角表示、各項(xiàng)的形式判斷正誤即可.【詳解】由題設(shè),,故A、C、D錯(cuò)誤;而,故B正確.故選:B2.已知集合,,且全集,則()A. B. C. D.【答案】D【解析】【分析】利用集合的交集、并集、補(bǔ)集的運(yùn)算法則求解.【詳解】由已知得集合表示的區(qū)間為,集合表示的區(qū)間為,則,,,,故選:.3.城市交通信號(hào)燈的配時(shí)合理與否將直接影響城市交通情況.我國(guó)采用的是紅綠交通信號(hào)燈管理方法,即“紅燈停、綠燈行”.不妨設(shè)某十字路口交通信號(hào)燈的變換具有周期性.在一個(gè)周期T內(nèi)交通信號(hào)燈進(jìn)行著紅綠交替變換(東西向紅燈的同時(shí),南北向變?yōu)榫G燈;然后東西向變?yōu)榫G燈,南北向變紅燈).用H表示一個(gè)周期內(nèi)東西方向到達(dá)該路口等待紅燈的車輛數(shù),V表示一個(gè)周期內(nèi)南北方向到達(dá)該路口等待紅燈的車輛數(shù),R表示一個(gè)周期內(nèi)東西方向開紅燈的時(shí)間,S表示一個(gè)周期內(nèi)所有到達(dá)該路口的車輛等待時(shí)間的總和(不考慮黃燈時(shí)間及其它起步因素),則S的計(jì)算公式為()A. B.C. D.【答案】B【解析】【分析】根據(jù)條件分別求出東西方向路口等待時(shí)間的總和及南北方向路口等待時(shí)間的總和,即可求解.【詳解】由題意得:一個(gè)周期內(nèi),東西方向路口等待紅燈的車輛數(shù)為,等待開紅燈的時(shí)間為,則一個(gè)周期內(nèi),東西方向路口等待時(shí)間的總和為,又交通信號(hào)燈紅綠交替變換時(shí)間周期為,所以一個(gè)周期內(nèi),南北方向路口等待開紅燈的時(shí)間為,又一個(gè)周期內(nèi),南北方向路口等待紅燈的車輛數(shù)為,則一個(gè)周期內(nèi),南北方向路口等待時(shí)間總和為,一個(gè)周期內(nèi),到達(dá)該路口的車輛等待時(shí)間的總和,故選:B.4.在△ABC中,,且點(diǎn)D滿足,則()A. B. C. D.【答案】A【解析】【分析】由、,結(jié)合向量數(shù)量積的運(yùn)算律轉(zhuǎn)化求模長(zhǎng)即可.【詳解】由題設(shè),中點(diǎn),則,所以,又,即,所以,故.故選:A5.已知,則()A. B.-1 C. D.【答案】C【解析】【分析】應(yīng)用誘導(dǎo)公式、商數(shù)關(guān)系可得,再由和角正切公式展開求得,最后由求值即可.【詳解】由,所以,則,所以,則,故,由.故選:C6.已知?jiǎng)又本€l的方程為,,,O為坐標(biāo)原點(diǎn),過點(diǎn)O作直線l的垂線,垂足為Q,則線段PQ長(zhǎng)度的取值范圍為()A. B. C. D.【答案】B【解析】【分析】利用萬能公式將直線方程化為,求出過原點(diǎn)與直線垂直的直線方程,進(jìn)而得出點(diǎn)的軌跡為圓心為半徑為3的圓,進(jìn)而轉(zhuǎn)化為點(diǎn)到圓的距離即可求解.【詳解】由可得,令,由萬能公式可得,,所以直線的方程為①,由題意可知過原點(diǎn)與直線垂直的直線方程為②,可得,即表示點(diǎn)的軌跡為圓心為半徑為3的圓,于是線段長(zhǎng)度的取值范圍為,因?yàn)?,所以線段PQ長(zhǎng)度的取值范圍為,故選:B.7.已知,函數(shù),記的最小值為,則().A.在上是增函數(shù),在上是減函數(shù)B.在上是減函數(shù),在上是增函數(shù)C.在上是奇函數(shù)D.在上是偶函數(shù)【答案】D【解析】【分析】根據(jù)題意,得到,令,分別討論,或,三種情況,畫出對(duì)應(yīng)函數(shù)圖像,結(jié)合圖像,即可得出結(jié)果.【詳解】函數(shù),令,①當(dāng)時(shí),的圖象如圖所示,,且在上單調(diào)遞減,在上單調(diào)遞增.②當(dāng)或時(shí),的圖象如圖所示,在點(diǎn)或處取得,根據(jù)圖形對(duì)稱性知,,且當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.所以的最小值在上是偶函數(shù).故選:D.【點(diǎn)睛】本題主要考查求函數(shù)的最值,以及判斷函數(shù)單調(diào)性,靈活運(yùn)用數(shù)形結(jié)合的方法求解即可,屬于??碱}型.8.如圖已知矩形,沿對(duì)角線將折起,當(dāng)二面角的余弦值為時(shí),則B與D之間距離為()A.1 B. C. D.【答案】C【解析】【分析】過和分別作,,根據(jù)向量垂直的性質(zhì),利用向量數(shù)量積進(jìn)行轉(zhuǎn)化求解即可.【詳解】解:過和分別作,,在矩形,,,,則,即,平面與平面所成角的余弦值為,,,,,,則,即與之間距離為,故選:C.二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)的得6分,部分選對(duì)的得部分分.9.在的展開式中,下列說法正確的是()A.常數(shù)項(xiàng)是 B.第四項(xiàng)和第六項(xiàng)的系數(shù)相等C.各項(xiàng)的二項(xiàng)式系數(shù)之和為 D.各項(xiàng)的系數(shù)之和為【答案】AC【解析】【分析】根據(jù)二項(xiàng)式定理,的通項(xiàng)公式為,對(duì)于A,令進(jìn)行判斷;對(duì)于B,令和計(jì)算判斷即可;對(duì)于C,因?yàn)?所以各項(xiàng)的二項(xiàng)式系數(shù)之和為可進(jìn)行判斷;對(duì)于D,令即可進(jìn)行判斷.【詳解】根據(jù)二項(xiàng)式定理,通項(xiàng)公式為,對(duì)于A,常數(shù)項(xiàng)為,故A正確;對(duì)于B,第四項(xiàng)的系數(shù)為,第六項(xiàng)的系數(shù)為,故B錯(cuò)誤;對(duì)于C,因?yàn)?所以各項(xiàng)的二項(xiàng)式系數(shù)之和為,故C正確;對(duì)于D,令,各項(xiàng)的系數(shù)之和為,故D錯(cuò)誤.故選:AC.10.已知公差為d的等差數(shù)列前n項(xiàng)和為,若存在正整數(shù),對(duì)任意正整數(shù)m,恒成立,則下列結(jié)論一定正確的是()A. B.有最小值 C. D.【答案】ABD【解析】【分析】由條件可得,然后可判斷A,,然后可判斷B,舉例可判斷C不正確,由條件可得,,可得,同號(hào),可判斷D.【詳解】由知,否則與同號(hào).當(dāng)時(shí),有否則與同號(hào)或,當(dāng)時(shí),有否則與同號(hào)或,故A正確.對(duì)于選項(xiàng)B,因?yàn)椋缘炔顢?shù)列的前n項(xiàng)和滿足,又的圖象是拋物線,所以必有最小值,故B正確.對(duì)于選項(xiàng)C,例如數(shù)列,2,5,,選項(xiàng)C不成立.由恒成立,可得,,即,同號(hào),不妨設(shè),都為負(fù),則為正,且,即,,所以,故D正確,故選:ABD.11.已知拋物線E:的焦點(diǎn)為F,點(diǎn)F與點(diǎn)C關(guān)于原點(diǎn)對(duì)稱,過點(diǎn)C的直線l與拋物線E交于A,B兩點(diǎn)(點(diǎn)A和點(diǎn)C在點(diǎn)B的兩側(cè)),則下列命題正確的是()A.若BF為的中線,則B.若BF為的角平分線,則C.存在直線l,使得D.對(duì)于任意直線l,都有【答案】ABD【解析】【分析】首先設(shè)直線的方程,并聯(lián)立拋物線,根據(jù)韋達(dá)定理,再根據(jù)各項(xiàng)描述,拋物線的定義,即可判斷選項(xiàng).【詳解】設(shè)題意,設(shè),不妨令,都在第一象限,,,聯(lián)立,則,且,即,所以,,則,,如上圖所示,A.若為的中線,則,所以,所以,故,所以,則,則,故A正確;B.若為的角平分線,則,作垂直準(zhǔn)線于,則且,所以,即,則,將代入整理,得,則,所以,故B正確;C.若,即,即為等腰直角三角形,此時(shí),即,所以,所以,所以,所以,則此時(shí)為同一點(diǎn),不合題設(shè),故C錯(cuò)誤;D.,而,結(jié)合,可得,即恒成立,故D正確.故選:ABD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是根據(jù)拋物線的幾何關(guān)系,轉(zhuǎn)化為坐標(biāo)運(yùn)算.三、填空題:本題共3小題,每小題5分,共15分.12.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,若,,則______.【答案】【解析】【分析】根據(jù)等差和等比數(shù)列的性質(zhì),再結(jié)合特殊角的正切值,即可求解.【詳解】由等差數(shù)列的性質(zhì)可知,,即,而,根據(jù)等比數(shù)列的性質(zhì)可知,,則,,所以.故答案為:13.已知,,若,則的取值范圍是_______.【答案】【解析】【分析】利用完全平方式即可得到的范圍.【詳解】由得,當(dāng)且僅當(dāng)或時(shí)等號(hào)成立,又得,.故答案為:.14.已知內(nèi)接于單位圓,以BC,AC,AB為邊向外作三個(gè)等邊三角形,其外接圓圓心依次記為,,.若,則的面積最大值為______.【答案】【解析】【分析】首先判斷并證明為等邊三角形(拿破侖三角形),再利用正三角形內(nèi)角結(jié)合題目條件計(jì)算出,則的邊長(zhǎng)可通過勾股定理用的兩邊、表示,最后根據(jù)中余弦定理關(guān)系,由基本不等式求出其最大值.【詳解】如圖,根據(jù)題意為等邊三角形(拿破侖三角形),稍后證明.為等邊三角形的外心,,同理.記,,則.由余弦定理得同理計(jì)算可得故,即為等邊三角形.,.,.由余弦定理得,,,解得..故答案為:.四、解答題:本題共5小題,共77分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.15.在中,已知內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且的面積為,點(diǎn)D是線段上靠近點(diǎn)B的一個(gè)三等分點(diǎn),.(1)若,求c;(2)若,求值.【答案】(1)(2)【解析】【分析】(1)由得,再結(jié)合余弦定理從而可求解.(2)由利用向量可得,并結(jié)合得,再由,從而可求解.【小問1詳解】由題可得:,故又,即,,即在中,根據(jù)余弦定理得即,即,【小問2詳解】,,即又,①又②,由①②得:16.如圖在三棱錐中,和均為等腰三角形,且,.(1)判斷是否成立?并給出證明;(2)求直線與平面所成角的正弦值.【答案】(1)不成立,證明見解析;(2).【解析】【分析】(1)假設(shè),得平面,由線面垂直的性質(zhì)可得,與矛盾,從而可得不成立;(2)取的中點(diǎn),的中點(diǎn),證明平面,進(jìn)而可得平面平面,再取的中點(diǎn),證明平面,根據(jù)線面角的定義知為直線與平面所成的角,在直角三角形中求解.【詳解】(1)不成立,證明如下:假設(shè),因?yàn)?,且,所以平面,所以,這與已知矛盾,所以不成立.(2)如圖,取的中點(diǎn),的中點(diǎn),連接,,,由已知計(jì)算得,由已知得,,且,所以平面,所以平面平面.取的中點(diǎn),連接,,則,平面,從而是直線與平面所成的角,因?yàn)?,,所以,即直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查線面垂直的判定與性質(zhì),直線與平面所成的角,意在考查考生的推理論證能力、空間想象能力,考查的核心素養(yǎng)是邏輯推理、直觀想象.17.已知函數(shù).(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),求函數(shù)的最小值.【答案】(1)(2)【解析】【分析】(1)由導(dǎo)數(shù)的幾何意義得出切線方程;(2)對(duì)函數(shù)求導(dǎo),用導(dǎo)數(shù)方法判斷函數(shù)在上的單調(diào)性,即可得出結(jié)果.【小問1詳解】由,得,所以,,函數(shù)在處的切線方程【小問2詳解】令,當(dāng)時(shí),,則,所以,所以,所以在單調(diào)遞減;當(dāng)時(shí),,則,此時(shí),所以在單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得最小值;所以當(dāng)時(shí),函數(shù)的最小值為18.口袋中共有7個(gè)質(zhì)地和大小均相同的小球,其中4個(gè)是黑球,現(xiàn)采用不放回抽取方式每次從口袋中隨機(jī)抽取一個(gè)小球,直到將4個(gè)黑球全部取出時(shí)停止.(1)記總的抽取次數(shù)為X,求E(X);(2)現(xiàn)對(duì)方案進(jìn)行調(diào)整:將這7個(gè)球分裝在甲乙兩個(gè)口袋中,甲袋裝3個(gè)小球,其中2個(gè)是黑球;乙袋裝4個(gè)小球,其中2個(gè)是黑球.采用不放回抽取方式先從甲袋每次隨機(jī)抽取一個(gè)小球,當(dāng)甲袋的2個(gè)黑球被全部取出后再用同樣方式在乙袋中進(jìn)行抽取,直到將乙袋的2個(gè)黑球也全部取出后停止.記這種方案的總抽取次數(shù)為Y,求E(Y)并從實(shí)際意義解釋E(Y)與(1)中的E(X)的大小關(guān)系.【答案】(1)(2)6,答案見解析【解析】【分析】(1)確定X可能取值為4,5,6,7,分別求出概率后,由期望公式計(jì)算出期望;(2)Y可能取值為4,5,6,7,設(shè)甲袋和乙袋抽取次數(shù)分別為和,利用獨(dú)立事件概率公式求得的概率,再由期望公式計(jì)算出期望,根據(jù)白球?qū)θ〉胶谇虻挠绊懻f明期望的大小關(guān)系.【小問1詳解】X可能取值為4,5,6,7,,;【小問2詳解】Y可能取值為4,5,6,7,設(shè)甲袋和乙袋抽取次數(shù)分別為和,,,,,.在將球分裝時(shí),甲袋中的黑球取完后直接取乙袋,若此時(shí)甲袋中還有其它球,則該球的干擾作用已經(jīng)消失,所以同樣是要取出4個(gè)黑球,調(diào)整后的方案總抽取次數(shù)的期望更低.19.已知雙曲線:,F(xiàn)為雙曲線的右焦點(diǎn),過F作直線交雙曲線于A,B兩點(diǎn),過F點(diǎn)且與直線垂直的直線交直線于P點(diǎn),直線OP交雙曲線于M,N兩點(diǎn).(1)求雙曲線的離心率;(2)若直線OP的斜率為,求的值;(3)設(shè)直線AB,AP,AM,AN的斜率分別為,,,,且,,記,,,試探究v與u,w滿足的方程關(guān)系,并將v用w,u表示出來.【答案】(1)(2)(3)【解析】【分析】(1)根據(jù)雙曲線方程求離心率;(2)首先由已知得,由直線垂直關(guān)系,點(diǎn)斜式寫出直線的方程,聯(lián)立曲線并應(yīng)用韋達(dá)定理求;(3)首先由條件設(shè)出點(diǎn)的坐標(biāo),并根據(jù)已知條件表示,進(jìn)而求出和,再求直線,與雙曲線方程聯(lián)立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 下屬違反財(cái)務(wù)制度
- 藝術(shù)團(tuán)財(cái)務(wù)制度
- 健身房公司財(cái)務(wù)制度
- 社會(huì)社團(tuán)財(cái)務(wù)制度
- 分析蘇寧易購(gòu)財(cái)務(wù)制度
- 農(nóng)村集體經(jīng)濟(jì)組織會(huì)計(jì)稽核制度
- 景區(qū)商戶日常管理制度范本(3篇)
- 烤年糕活動(dòng)方案策劃(3篇)
- 江北管道施工方案(3篇)
- 羊水栓塞不同治療方案的成本效果分析
- 湖北省咸寧市2025-2026學(xué)年物理高二上期末復(fù)習(xí)檢測(cè)試題含解析
- 2025年煤層氣開發(fā)行業(yè)分析報(bào)告及未來發(fā)展趨勢(shì)預(yù)測(cè)
- 20以內(nèi)加減法混合口算練習(xí)題1000道(附答案)
- 全民健身中心建設(shè)工程施工方案
- 傳統(tǒng)文化音樂課題申報(bào)書
- GB/T 21526-2025結(jié)構(gòu)膠粘劑粘接前金屬和塑料表面處理導(dǎo)則
- 天然氣管道應(yīng)急搶修技術(shù)方案
- (2025年標(biāo)準(zhǔn))情侶欠錢協(xié)議書
- 長(zhǎng)租公寓消防知識(shí)培訓(xùn)課件
- 部隊(duì)普通車輛裝卸載課件
- GB/T 11803-2025船用交流低壓配電板
評(píng)論
0/150
提交評(píng)論