2023-2024學年山東省聊城市高二下學期期末教學質(zhì)量抽測數(shù)學試題(解析版)_第1頁
2023-2024學年山東省聊城市高二下學期期末教學質(zhì)量抽測數(shù)學試題(解析版)_第2頁
2023-2024學年山東省聊城市高二下學期期末教學質(zhì)量抽測數(shù)學試題(解析版)_第3頁
2023-2024學年山東省聊城市高二下學期期末教學質(zhì)量抽測數(shù)學試題(解析版)_第4頁
2023-2024學年山東省聊城市高二下學期期末教學質(zhì)量抽測數(shù)學試題(解析版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高級中學名校試卷PAGEPAGE1山東省聊城市2023-2024學年高二下學期期末教學質(zhì)量抽測數(shù)學試題注意事項:1.本試卷滿分150分,考試用時120分鐘.答卷前,考生務必將自己的姓名、考生號等填寫在答題卡的相應位置上.2.回答選擇題時,選出每小題的答案后,用2B鉛筆把答題卡上對應題目的答案標號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標號.回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效.3.考試結(jié)束后,只將答題卡交回.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求.1.已知集合,,則()A. B.C. D.【答案】D【解析】,所以,則.故選:D.2.在線性回歸模型中,能說明模型的擬合效果越好的是()A.殘差圖越寬 B.殘差平方和越小C.決定系數(shù)越小 D.相關(guān)系數(shù)越大【答案】B【解析】殘差圖越寬,模型的擬合效果越差,故A錯誤;殘差平方和越小,模型的擬合效果越好,故B正確;決定系數(shù)越小,說明模型的擬合效果越差,故C錯誤;相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強,故D錯誤;故選:B3.設(shè)隨機變量,,這兩個正態(tài)分布密度曲線如圖所示,則()A. B.C. D.【答案】D【解析】的密度曲線的對稱軸在的密度曲線的對稱軸的左邊,即.的密度曲線較為分散,的密度曲線較為集中,即,故AB錯誤;因為,所以C錯誤;因為,所以D正確;故選:D4.已知函數(shù),若,則的值可以為()A. B. C. D.【答案】A【解析】,當時,,當時,,因為,所以,故選:A5.設(shè)函數(shù),若的最小值為-163,則的最大值為()A. B. C.0 D.【答案】B【解析】由,得,由,得,由,得,所以在上遞減,在上遞增,所以,因為的最小值為-163,所以,所以,因為,,所以的最大值為.故選:B6.甲、乙、丙、丁4名同學去聽同時舉行的3個課外知識講座,每名同學可自由選擇聽其中的1個講座,若甲、乙兩名同學不聽同一個講座,則不同選擇的種數(shù)是()A.30 B.36 C.54 D.60【答案】C【解析】根據(jù)題意,首先甲在3個講座中選擇一個,然后乙在剩余的兩場講座中選擇一個,最后丙、丁分別在3個講座中選擇一個,所以若甲、乙兩名同學不聽同一個講座,則不同選擇的種數(shù)是.故選:C7.“”是“關(guān)于的不等式有整數(shù)解”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】函數(shù)的圖象如下圖所示:由圖可知,時,不等式無整數(shù)解,當時,必是不等式整數(shù)解,即“”是“關(guān)于的不等式有整數(shù)解”的充要條件.故選:C8.已知定義在上的函數(shù)的導函數(shù)為,若,且,,則的解集為()A. B.C D.【答案】D【解析】構(gòu)造函數(shù),,,即函數(shù)在R上單調(diào)遞減,等價于,解得.即的解集為.故選:D二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.若,則()A. B.ab>bC. D.【答案】ACD【解析】A選項,,故,即a2>b不等式兩邊同除以得,A正確;B選項,不妨令,則,此時,B錯誤;C選項,若,則,因為在R上單調(diào)遞增,所以,若,則,故,所以,故,綜上,,C正確;D選項,若,則,,若,則,故,D正確.故選:ACD10.如圖,我國傳統(tǒng)珠算算具算盤每個檔(掛珠的桿)上有7顆算珠,用梁隔開,梁上面2顆叫上珠,下面5顆叫下珠,若從某一檔的7顆算珠中任選3顆,記上珠的個數(shù)為,下珠的個數(shù)比上珠的個數(shù)多,則()A. B.C. D.【答案】BCD【解析】由題意知,.,則,故A錯誤,B正確;由題意知,.,,故CD正確;故選:BCD11.五一假期過后,車主小王選擇去該市新開的,兩家共享自助洗車店洗車.已知小王第一次去,兩家洗車店洗車的概率分別為和,如果小王第一次去洗車店,那么第二次去洗車店的概率為;如果小王第一次去洗車店,那么第二次去洗車店的概率為,則下列結(jié)論正確的是()A.小王第一次去洗車店,第二次也去洗車店的概率為B.小王第二次去洗車店的概率比第二次去洗車店的概率大C.若小王第二次去了洗車店,則他第一次去洗車店的概率為D.若小王第二次去了洗車店,則他第一次去洗車店的概率為【答案】AC【解析】記第次去洗車店為Ai,第次去洗車店為,由題意可知,,對于A:,故A正確;對于B:,,故B錯誤;對于C:,故C正確;對于D:,故D錯誤;故選:AC.三、填空題:本題共3小題,每小題5分,共15分.12.由數(shù)據(jù)可得關(guān)于的經(jīng)驗回歸方程為,若,則_____________.【答案】32【解析】依題意,,由,得,解得,所以.故答案為:3213.已知正數(shù),滿足,則的最小值為_____________.【答案】【解析】因為,則因為x>0,,所以,則原式,當即時,取等號.所以的最小值為.故答案為:.14.設(shè)定義在上的函數(shù)滿足,,且時,,則方程在區(qū)間上所有實數(shù)根的和為_____________.【答案】6【解析】當時,,即當時,函數(shù)關(guān)于1,0對稱.因為,所以的周期為2,易知函數(shù)在上單調(diào)遞減,且時,;時,.方程等價于,令,易知函數(shù)關(guān)于1,0對稱,函數(shù),的圖象如下圖所示:由圖可知,函數(shù)與在區(qū)間上只有6個交點,不妨設(shè)交點的橫坐標從小到大分別為,則由對稱性可知,即方程在區(qū)間上所有實數(shù)根的和為.故答案為:6四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.某餐館為了解顧客對某一新菜品的喜好程度是否與年齡有關(guān),隨機調(diào)查了品嘗過該菜品的100位顧客,得到下面列聯(lián)表:顧客對該菜品的喜好程度合計喜歡不喜歡青年人351550中老年人252550合計6040100(1)根據(jù)上表,分別估計青年人、中老年人喜歡該菜品的概率;(2)根據(jù)小概率值的獨立性檢驗,判斷顧客對該菜品的喜好程度與年齡是否有關(guān)聯(lián).附:,其中.010.050.010.0052.7063.8416.6357.879解:(1)根據(jù)表中數(shù)據(jù),青年人共有50人,喜歡該菜品的有35人,設(shè)“青年人喜歡該菜品”為事件A,則.中老年人共有50人,喜歡該菜品的有25人,設(shè)“中老年喜歡該菜品”為事件B,則.所以估計青年人、中老年人喜歡該菜品的概率分別為(2)零假設(shè):顧客對該菜品的喜好程度與年齡無關(guān).依題意,得,根據(jù)小概率值的獨立性檢驗,推斷成立,即顧客對該菜品的喜好程度與年齡有關(guān)聯(lián),此推斷犯錯誤的概率不大于.16.已知.(1)求的值;(2)求的值;(3)求的值.(結(jié)果用數(shù)字表示)解:(1)在中,令,得,所以.(2)在中,令,得,所以(3)的展開式的通項公式,因此.所以.17.已知函數(shù)的定義域為.(1)求的取值范圍;(2)當時,判斷的奇偶性,并解關(guān)于的不等式.解:(1)因為函數(shù)的定義域為,所以恒成立,令,則,所以在上恒成立,即當時,恒成立,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,所以.(2)當時,,易知的定義域為,因為,所以為偶函數(shù).當時,,令,因為函數(shù)在上單調(diào)遞增,且在定義域上為增函數(shù),所以函數(shù)在上單調(diào)遞增,又因為函數(shù)在定義域上為偶函數(shù),所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因為,所以,即,解得.18.有一個摸獎游戲,在一個口袋中裝有3個紅球和3個白球,這些球除顏色外完全相同,游戲規(guī)定:每位參與者進行次摸球,每次從袋中一次性摸出兩個球,如果每次摸出的兩個球顏色相同即為中獎,顏色不同即為不中獎,有兩種摸球方式:一是每次摸球后將球均不放回袋中,直接進行下一次摸球,中獎次數(shù)記為;二是每次摸球后將球均放回袋中,再進行下一次摸球,中獎次數(shù)記為.(1)求第一次摸球就中獎的概率;(2)若,求的分布列和數(shù)學期望;(3)若,函數(shù)隨機變量,求的數(shù)學期望.解:(1)記“第一次摸球就中獎”為事件,則即第一次摸球就中獎的概率為.(2)若,且第一次摸球后將球均不放回袋中,直接進行第二次摸球,則的可能取值為.則則的分布列為所以的數(shù)學期望為(3)若,且每次摸球后均將球放回袋中,再進行下一次摸球,則每次中獎相互獨立,且由(1)知每次中獎的概率均為,所以.此時的可能取值為.的可能取值為當時,;當時,,當時,.因為,所以又,所以.所以.即的數(shù)學期望為.19.已知函數(shù).(1)當時,求的單調(diào)區(qū)間;(2)若的導函數(shù)f'x滿足恒成立.(Ⅰ)求的值;(Ⅱ)討論零點的個數(shù).解:(1)時,,當時,在R上單調(diào)遞減;當時,,若,則時,單調(diào)遞減;時,單調(diào)遞增;若,則時,單調(diào)遞增;時,單調(diào)遞減;綜上,時,的單調(diào)減區(qū)間為,無單調(diào)增區(qū)間;時,的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2)(Ⅰ)由,得,因為恒成立,所以是的最小值,即是的極小值點.令,且,解得.此時時,單調(diào)遞減,即單調(diào)遞減;時,單調(diào)遞增,即單調(diào)遞增,所以,符合題意.故.(Ⅱ)由(Ⅰ)知,因為,所以零點個數(shù)等價于方程實根的個數(shù).令,則,所以當或時,;當或時,,即在和上單調(diào)遞增,在和上單調(diào)遞減,當時,,,所以,又,所以的大致圖象如圖所示:所以當或或時,方程恰有一個實根,零點的個數(shù)為1;當或時,方程恰有兩個實根,零點的個數(shù)為2;當時,方程無實根,零點的個數(shù)為0.山東省聊城市2023-2024學年高二下學期期末教學質(zhì)量抽測數(shù)學試題注意事項:1.本試卷滿分150分,考試用時120分鐘.答卷前,考生務必將自己的姓名、考生號等填寫在答題卡的相應位置上.2.回答選擇題時,選出每小題的答案后,用2B鉛筆把答題卡上對應題目的答案標號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標號.回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效.3.考試結(jié)束后,只將答題卡交回.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求.1.已知集合,,則()A. B.C. D.【答案】D【解析】,所以,則.故選:D.2.在線性回歸模型中,能說明模型的擬合效果越好的是()A.殘差圖越寬 B.殘差平方和越小C.決定系數(shù)越小 D.相關(guān)系數(shù)越大【答案】B【解析】殘差圖越寬,模型的擬合效果越差,故A錯誤;殘差平方和越小,模型的擬合效果越好,故B正確;決定系數(shù)越小,說明模型的擬合效果越差,故C錯誤;相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強,故D錯誤;故選:B3.設(shè)隨機變量,,這兩個正態(tài)分布密度曲線如圖所示,則()A. B.C. D.【答案】D【解析】的密度曲線的對稱軸在的密度曲線的對稱軸的左邊,即.的密度曲線較為分散,的密度曲線較為集中,即,故AB錯誤;因為,所以C錯誤;因為,所以D正確;故選:D4.已知函數(shù),若,則的值可以為()A. B. C. D.【答案】A【解析】,當時,,當時,,因為,所以,故選:A5.設(shè)函數(shù),若的最小值為-163,則的最大值為()A. B. C.0 D.【答案】B【解析】由,得,由,得,由,得,所以在上遞減,在上遞增,所以,因為的最小值為-163,所以,所以,因為,,所以的最大值為.故選:B6.甲、乙、丙、丁4名同學去聽同時舉行的3個課外知識講座,每名同學可自由選擇聽其中的1個講座,若甲、乙兩名同學不聽同一個講座,則不同選擇的種數(shù)是()A.30 B.36 C.54 D.60【答案】C【解析】根據(jù)題意,首先甲在3個講座中選擇一個,然后乙在剩余的兩場講座中選擇一個,最后丙、丁分別在3個講座中選擇一個,所以若甲、乙兩名同學不聽同一個講座,則不同選擇的種數(shù)是.故選:C7.“”是“關(guān)于的不等式有整數(shù)解”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】函數(shù)的圖象如下圖所示:由圖可知,時,不等式無整數(shù)解,當時,必是不等式整數(shù)解,即“”是“關(guān)于的不等式有整數(shù)解”的充要條件.故選:C8.已知定義在上的函數(shù)的導函數(shù)為,若,且,,則的解集為()A. B.C D.【答案】D【解析】構(gòu)造函數(shù),,,即函數(shù)在R上單調(diào)遞減,等價于,解得.即的解集為.故選:D二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.若,則()A. B.ab>bC. D.【答案】ACD【解析】A選項,,故,即a2>b不等式兩邊同除以得,A正確;B選項,不妨令,則,此時,B錯誤;C選項,若,則,因為在R上單調(diào)遞增,所以,若,則,故,所以,故,綜上,,C正確;D選項,若,則,,若,則,故,D正確.故選:ACD10.如圖,我國傳統(tǒng)珠算算具算盤每個檔(掛珠的桿)上有7顆算珠,用梁隔開,梁上面2顆叫上珠,下面5顆叫下珠,若從某一檔的7顆算珠中任選3顆,記上珠的個數(shù)為,下珠的個數(shù)比上珠的個數(shù)多,則()A. B.C. D.【答案】BCD【解析】由題意知,.,則,故A錯誤,B正確;由題意知,.,,故CD正確;故選:BCD11.五一假期過后,車主小王選擇去該市新開的,兩家共享自助洗車店洗車.已知小王第一次去,兩家洗車店洗車的概率分別為和,如果小王第一次去洗車店,那么第二次去洗車店的概率為;如果小王第一次去洗車店,那么第二次去洗車店的概率為,則下列結(jié)論正確的是()A.小王第一次去洗車店,第二次也去洗車店的概率為B.小王第二次去洗車店的概率比第二次去洗車店的概率大C.若小王第二次去了洗車店,則他第一次去洗車店的概率為D.若小王第二次去了洗車店,則他第一次去洗車店的概率為【答案】AC【解析】記第次去洗車店為Ai,第次去洗車店為,由題意可知,,對于A:,故A正確;對于B:,,故B錯誤;對于C:,故C正確;對于D:,故D錯誤;故選:AC.三、填空題:本題共3小題,每小題5分,共15分.12.由數(shù)據(jù)可得關(guān)于的經(jīng)驗回歸方程為,若,則_____________.【答案】32【解析】依題意,,由,得,解得,所以.故答案為:3213.已知正數(shù),滿足,則的最小值為_____________.【答案】【解析】因為,則因為x>0,,所以,則原式,當即時,取等號.所以的最小值為.故答案為:.14.設(shè)定義在上的函數(shù)滿足,,且時,,則方程在區(qū)間上所有實數(shù)根的和為_____________.【答案】6【解析】當時,,即當時,函數(shù)關(guān)于1,0對稱.因為,所以的周期為2,易知函數(shù)在上單調(diào)遞減,且時,;時,.方程等價于,令,易知函數(shù)關(guān)于1,0對稱,函數(shù),的圖象如下圖所示:由圖可知,函數(shù)與在區(qū)間上只有6個交點,不妨設(shè)交點的橫坐標從小到大分別為,則由對稱性可知,即方程在區(qū)間上所有實數(shù)根的和為.故答案為:6四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.某餐館為了解顧客對某一新菜品的喜好程度是否與年齡有關(guān),隨機調(diào)查了品嘗過該菜品的100位顧客,得到下面列聯(lián)表:顧客對該菜品的喜好程度合計喜歡不喜歡青年人351550中老年人252550合計6040100(1)根據(jù)上表,分別估計青年人、中老年人喜歡該菜品的概率;(2)根據(jù)小概率值的獨立性檢驗,判斷顧客對該菜品的喜好程度與年齡是否有關(guān)聯(lián).附:,其中.010.050.010.0052.7063.8416.6357.879解:(1)根據(jù)表中數(shù)據(jù),青年人共有50人,喜歡該菜品的有35人,設(shè)“青年人喜歡該菜品”為事件A,則.中老年人共有50人,喜歡該菜品的有25人,設(shè)“中老年喜歡該菜品”為事件B,則.所以估計青年人、中老年人喜歡該菜品的概率分別為(2)零假設(shè):顧客對該菜品的喜好程度與年齡無關(guān).依題意,得,根據(jù)小概率值的獨立性檢驗,推斷成立,即顧客對該菜品的喜好程度與年齡有關(guān)聯(lián),此推斷犯錯誤的概率不大于.16.已知.(1)求的值;(2)求的值;(3)求的值.(結(jié)果用數(shù)字表示)解:(1)在中,令,得,所以.(2)在中,令,得,所以(3)的展開式的通項公式,因此.所以.17.已知函數(shù)的定義域為.(1)求的取值范圍;(2)當時,判斷的奇偶性,并解關(guān)于的不等式.解:(1)因為函數(shù)的定義域為,所以恒成立,令,則,所以在上恒成立,即當時,恒成立,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,所以.(2)當時,,易知的定義域為,因為,所以為偶函數(shù).當時,,令,因為函數(shù)在上單調(diào)遞增,且在定義域上為增函數(shù),所以函數(shù)在上單調(diào)遞增,又因為函數(shù)在定義域上為偶函數(shù),所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因為,所以,即,解得.18.有一個摸獎游戲,在一個口袋中裝有3個紅球和3個白球,這些球除顏色外完全相同,游

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論