人教A版高中數(shù)學(xué)必修四2.2.3《向量數(shù)乘運(yùn)算及其幾何意義》教案_第1頁(yè)
人教A版高中數(shù)學(xué)必修四2.2.3《向量數(shù)乘運(yùn)算及其幾何意義》教案_第2頁(yè)
人教A版高中數(shù)學(xué)必修四2.2.3《向量數(shù)乘運(yùn)算及其幾何意義》教案_第3頁(yè)
人教A版高中數(shù)學(xué)必修四2.2.3《向量數(shù)乘運(yùn)算及其幾何意義》教案_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《向量數(shù)乘運(yùn)算及其幾何意義》教案一、教材分析1.《新課程標(biāo)準(zhǔn)》的解讀分析向量具有豐富的現(xiàn)實(shí)背景和物理背景,是溝通幾何、代數(shù)、三角等內(nèi)容的橋梁,是重要的數(shù)學(xué)模型.在本模塊的教學(xué)中,應(yīng)鼓勵(lì)學(xué)生使用計(jì)算器和計(jì)算機(jī)探索和解決問(wèn)題.在相應(yīng)的內(nèi)容中可以插入數(shù)學(xué)探究或數(shù)學(xué)建?;顒?dòng).2.在整個(gè)高中教材中的地位和作用.向量,具有“數(shù)”與“行”的雙重身份,是處理問(wèn)題的一種工具,作用非常大,貫穿于整個(gè)高中數(shù)學(xué)的學(xué)習(xí)中.3.本章節(jié)地位、本節(jié)的邏輯關(guān)系.向量數(shù)乘運(yùn)算及其幾何意義位于人教版《必修4》2.2.3節(jié),在本章節(jié)中起著承前起后的作用.學(xué)生在掌握向量加法、減法的基礎(chǔ)上,學(xué)習(xí)實(shí)數(shù)與向量的積的運(yùn)算已無(wú)多大困難.通過(guò)前面學(xué)習(xí)二、教學(xué)重難點(diǎn)重點(diǎn):難點(diǎn):向量共線定理的探究及其應(yīng)用.三、三維目標(biāo)設(shè)計(jì)1.知識(shí)與技能:通過(guò)實(shí)例,掌握向量數(shù)乘運(yùn)算,理解其幾何意義,理解向量共線定理.熟練運(yùn)用定義、運(yùn)算律進(jìn)行有關(guān)計(jì)算,能夠運(yùn)用定理解決向量共線、三點(diǎn)共線、直線平行等問(wèn)題.2.過(guò)程與方法:理解掌握向量共線定理及其證明過(guò)程,會(huì)根據(jù)向量共線定理判斷兩個(gè)向量是否共線.3.態(tài)度情感與價(jià)值觀:通過(guò)由實(shí)例到概念,由具體到抽象,培養(yǎng)學(xué)生自主探究知識(shí)形成的過(guò)程的能力,合作釋疑過(guò)程中合作交流的能力.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情感,培養(yǎng)學(xué)生實(shí)事求是的科學(xué)態(tài)度,勇于創(chuàng)新的精神.四、教學(xué)過(guò)程(一)引入1.復(fù)習(xí)向量的加法、減法,(溫故而知新),采用提問(wèn)的形式.問(wèn)題1:向量加法的運(yùn)算法則?問(wèn)題2:向量減法的幾何意義?學(xué)生回答完畢后,教師通過(guò)多媒體上的圖像讓學(xué)生更直觀感受.向量的加法:三角形法則(首尾相連)和平行四邊形法則(共起點(diǎn)).2.問(wèn)題情境:一質(zhì)點(diǎn)從點(diǎn)O出發(fā)做勻速直線運(yùn)動(dòng),若經(jīng)過(guò)1s的位移對(duì)應(yīng)的向量用表示,那么在同方向上經(jīng)過(guò)3s的位移所對(duì)應(yīng)的向量可用來(lái)表示.這是何種運(yùn)算的結(jié)果?啟發(fā)學(xué)生發(fā)現(xiàn):這些公式都是實(shí)數(shù)與向量間的關(guān)系3.【探究1】問(wèn)題1:相加后,和的長(zhǎng)度和方向有什么變化?問(wèn)題2:這些變化與哪些因素有關(guān)?師:非常好!教師通過(guò)多媒體,看長(zhǎng)度和方向的圖像變化形式.(二)新課講解1.實(shí)數(shù)與向量的積的定義請(qǐng)大家根據(jù)上述問(wèn)題并作一下類比,看看怎樣定義實(shí)數(shù)λ與向量的積?啟發(fā)學(xué)生從以下角度思考:是向量?長(zhǎng)度?方向?根據(jù)學(xué)生總結(jié),讓學(xué)生看大屏幕.2.實(shí)數(shù)與向量的積的運(yùn)算律一般地,我們規(guī)定實(shí)數(shù)一般地,我們規(guī)定實(shí)數(shù)λ與向量的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作:,它的長(zhǎng)度和方向規(guī)定如下:(2)當(dāng)λ>0時(shí),的方向與的方向相同;當(dāng)λ<0時(shí),的方向與的方向相反。類比實(shí)數(shù)乘法的運(yùn)算律向量數(shù)乘的運(yùn)算律:設(shè)設(shè)、為任意向量,、為任意實(shí)數(shù),則有:為了降低難度,教科書不要求對(duì)三個(gè)運(yùn)算律作出證明,只要求學(xué)生會(huì)用.小注:實(shí)數(shù)與向量可以求積,但不能進(jìn)行加減運(yùn)算.例1:計(jì)算(口答)設(shè)計(jì)意圖:要求學(xué)生熟練運(yùn)用向量數(shù)乘運(yùn)算的運(yùn)算律.教學(xué)中,不能讓學(xué)生將本題簡(jiǎn)單地看作字母的代數(shù)運(yùn)算,可以讓他們?cè)诖鷶?shù)運(yùn)算的同時(shí)說(shuō)出其幾何意義,使學(xué)生明確向量數(shù)乘運(yùn)算的特點(diǎn).剖析:向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線形運(yùn)算.3、向量共線定理思考:引入向量數(shù)乘運(yùn)算后,你能發(fā)現(xiàn)數(shù)乘向量與原向量之間的位置關(guān)系嗎?生:數(shù)乘向量與原向量是共線的.【探究3】(學(xué)生分成兩組,各選一問(wèn)進(jìn)行研究,然后同學(xué)之間相互交流,最后提升結(jié)論.教師巡視,適時(shí)加以引導(dǎo),了解學(xué)生進(jìn)展情況)(學(xué)生驚訝,沒(méi)有限制會(huì)怎么樣呢?馬上進(jìn)入思考狀態(tài).)生:?jiǎn)栴}1成立.與任意向量都是共線向量.生:?jiǎn)栴}2不成立.評(píng)析:1.讓學(xué)生正確理解定理包含的兩層意思.也就是將來(lái)我們?cè)谶x修中學(xué)到的充要條件.2.讓學(xué)生自己先體驗(yàn);若無(wú)此限制,會(huì)有什么結(jié)果?再感悟到只有用非零向量,才能表示與它共線的所有向量.3.通過(guò)分組討論后,集同學(xué)們的勞動(dòng)成果、智慧于一體,彼此之間再進(jìn)行交流,充分體現(xiàn)了“眾人拾柴火焰高”.設(shè)計(jì)意圖:利用向量共線判斷三點(diǎn)共線的方法,這是判斷三點(diǎn)共線常用的方法.教學(xué)中可以先讓學(xué)生作圖,通過(guò)觀察圖形得到A、B、C三點(diǎn)共線的猜想,再將平面幾何中判斷三點(diǎn)共線的方法轉(zhuǎn)化為用向量共線證明三點(diǎn)共線,本題主要引導(dǎo)學(xué)生理清思路,具體過(guò)程可由學(xué)生完成.解:作圖如右(過(guò)程略)依圖觀察,知A、B、C三點(diǎn)共線.CACAoBCAoACAoOCAo∴A、B、C三點(diǎn)共線.評(píng)析:證明三點(diǎn)共線,可以直接運(yùn)用定理,找出兩向量間關(guān)系,再利用它們有一個(gè)公共點(diǎn),得到三點(diǎn)共線.教學(xué)中利用多媒體作圖,進(jìn)行動(dòng)態(tài)演示,揭示向量、變化過(guò)程中,A、B、C三點(diǎn)始終在同一條直線上的規(guī)律.∴與共線.評(píng)析:證明向量共線,可以直接運(yùn)用定理.思考:在本題中,若B、C分別是AD、AE的三等分點(diǎn),你能否利用向量關(guān)系來(lái)證明BC‖DE呢?(三)課堂小結(jié)通過(guò)本節(jié)學(xué)習(xí),要求大家掌握實(shí)數(shù)與向量的積的定義,掌

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論