版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)2.將方程x2-6x+3=0左邊配成完全平方式,得到的方程是(
)A.(x-3)2=-3
B.(x-3)2=6
C.(x-3)2=3
D.(x-3)2=123.下列命題中,為真命題的是()A.同位角相等 B.相等的兩個角互為對頂角C.若a2=b2,則a=b D.若a>b,則﹣2a<﹣2b4.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.5.如圖,A、B、C是⊙O上的三點,已知∠O=50°,則∠C的大小是()A.50° B.45° C.30° D.25°6.如圖,在中,,,,則等于()A. B. C. D.7.已知,是方程的兩個實數(shù)根,則的值是()A.2023 B.2021 C.2020 D.20198.第一中學九年級有340名學生,現(xiàn)對他們的生日進行統(tǒng)計(可以不同年),下列說法正確的是()A.至少有兩人生日相同 B.不可能有兩人生日相同C.可能有兩人生日相同,且可能性較大 D.可能有兩人生日相同,但可能性較小9.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(
)A.種植10棵幼樹,結(jié)果一定是“有9棵幼樹成活”B.種植100棵幼樹,結(jié)果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.910.在-2,-1,0,1這四個數(shù)中,最小的數(shù)是()A.-2 B.-1 C.0 D.1二、填空題(每小題3分,共24分)11.如圖,已知,,,若,,則四邊形的面積為______.12.將一副三角尺按如圖所示的方式疊放在一起,邊AC與BD相交于點E,則的值等于_________.13.如圖,ABC是⊙O的內(nèi)接三角形,AD是△ABC的高,AE是⊙O的直徑,且AE=4,若CD=1,AD=3,則AB的長為______.14.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2,其中結(jié)論正確的是________.15.將拋物線y=x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是__.16.如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,則AD的長_____.17.寫出一個圖象的頂點在原點,開口向下的二次函數(shù)的表達式_____.18.長為的梯子搭在墻上與地面成角,作業(yè)時調(diào)整為角(如圖所示),則梯子的頂端沿墻面升高了______.三、解答題(共66分)19.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.20.(6分)已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.(1)求拋物線的解析式;(2)求△MCB的面積.21.(6分)一艘漁船在A處觀測到東北方向有一小島C,已知小島C周圍4.8海里范圍內(nèi)是水產(chǎn)養(yǎng)殖場.漁船沿北偏東30°方向航行10海里到達B處,在B處測得小島C在北偏東60°方向,這時漁船改變航線向正東(即BD)方向航行,這艘漁船是否有進入養(yǎng)殖場的危險?22.(8分)如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連結(jié)OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.(1)求線段OA所在直線的函數(shù)解析式;(2)設(shè)拋物線頂點M的橫坐標為m.①用含m的代數(shù)式表示點P的坐標;②當m為何值時,線段PB最短;(3)當線段PB最短時,平移后的拋物線上是否存在點Q,使S△QMA=2S△PMA,若存在,請求出點Q的坐標;若不存在,請說明理由.23.(8分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.24.(8分)已知關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,且為正整數(shù),求的值.25.(10分)如圖,在正方形ABCD中,,點E為對角線AC上一動點(點E不與點A、C重合),連接DE,過點E作,交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.(1)求AC的長;(2)求證矩形DEFG是正方形;(3)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.26.(10分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.(1)求此拋物線的解析式;(2)已知點D在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D’的坐標;(3)在(2)的條件下,連結(jié)BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)反比例函數(shù)圖象和性質(zhì)即可解答.先判斷出反比例函數(shù)圖象的一分支所在象限,即可得到另一分支所在象限.【詳解】解:由于點(1,2)在第一象限,則反比例函數(shù)的一支在第一象限,另一支必過第三象限.第三象限內(nèi)點的坐標符號為(﹣,﹣)故選:D.此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)圖像的對稱性.2、B【解析】試題分析:移項,得x2-1x=-3,等式兩邊同時加上一次項系數(shù)一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故選B.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.3、D【解析】根據(jù)同位角、對頂角和等式以及不等式的性質(zhì),逐一判斷選項,即可.【詳解】A、兩直線平行,同位角相等,原命題是假命題;B、相等的兩個角不一定互為對頂角,原命題是假命題;C、若a2=b2,則a=b或a=﹣b,原命題是假命題;D、若a>b,則﹣2a<﹣2b,是真命題;故選:D.本題主要考查真假命題的判斷,熟練掌握常用的公理,定理,推論和重要結(jié)論,是解題的關(guān)鍵.4、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.5、D【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:∵∠C與∠AOB是同弧所對的圓周角與圓心角,
∵∠AOB=2∠C=50°,
∴∠C=∠AOB=25°.
故選:D.本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.6、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.7、A【分析】根據(jù)題意可知b=3-b2,a+b=-1,ab=-3,所求式子化為a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【詳解】,是方程的兩個實數(shù)根,∴,,,∴;故選A.本題考查一元二次方程的根與系數(shù)的關(guān)系;根據(jù)根與系數(shù)的關(guān)系將所求式子進行化簡代入是解題的關(guān)鍵.8、C【分析】依據(jù)可能性的大小的概念對各選項進行逐一分析即可.【詳解】A.因為一年有365天而某學校只有340人,所以至少有兩名學生生日相同是隨機事件.故本選項錯誤;B.兩人生日相同是隨機事件,故本選項錯誤;C.因為320365=6473>50%,所以可能性較大.正確;D.由C可知,可能性較大,故本選項錯誤.故選:C.本題考查了可能性的大小,也考查了我們對常識的了解情況.9、D【解析】A.種植10棵幼樹,結(jié)果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結(jié)果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.10、A【解析】根據(jù)正數(shù)大于0,負數(shù)小于0,負數(shù)絕對值越大值越小即可求解.【詳解】解:在、、、這四個數(shù)中,大小順序為:,所以最小的數(shù)是.故選A.此題考查了有理數(shù)的大小的比較,解題的關(guān)鍵利用正負數(shù)的性質(zhì)及數(shù)軸可以解決問題.二、填空題(每小題3分,共24分)11、1【分析】過點D作DE⊥AC于E,利用AAS證出ABC≌DAE,從而得出BC=AE,AC=DE,∠BAC=∠ADE,根據(jù)銳角三角函數(shù)可得,設(shè)BC=AE=x,則AC=DE=4x,從而求出CE,利用勾股定理列出方程即可求出x的值,從而求出BC、AC和DE,再根據(jù)四邊形的面積=即可求出結(jié)論.【詳解】解:過點D作DE⊥AC于E∴∠EAD+∠ADE=90°∵∴∠BAC+∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,∴ABC≌DAE∴BC=AE,AC=DE,∠BAC=∠ADE∴∴設(shè)BC=AE=x,則AC=DE=4x∴EC=AC-AE=3x在RtCDE中,CE2+DE2=CD2即(3x)2+(4x)2=52解得:x=1或-1(不符合題意舍去)∴BC=1,AC=DE=4∴四邊形的面積==BC·AC+AC·DE=×1×4+×4×4=1故答案為:1.此題考查的是全等三角形的判定及性質(zhì)、銳角三角函數(shù)和勾股定理,掌握全等三角形的判定及性質(zhì)、銳角三角函數(shù)和勾股定理是解題關(guān)鍵.12、【分析】如圖(見解析),先根據(jù)等腰直角三角形的判定與性質(zhì)可得,設(shè),從而可得,再在中,利用直角三角形的性質(zhì)、勾股定理可得,由此即可得出答案.【詳解】如圖,過點E作于點F,由題意得:,,是等腰直角三角形,,設(shè),則,在中,,,,解得,則,故答案為:.本題考查了等腰直角三角形的判定與性質(zhì)、直角三角形的性質(zhì)、勾股定理等知識點,通過作輔助線,構(gòu)造兩個直角三角形是解題關(guān)鍵.13、【分析】利用勾股定理求出AC,證明△ABE∽△ADC,推出,由此即可解決問題.【詳解】解:∵AD是△ABC的高,
∴∠ADC=90°,
∴,
∵AE是直徑,
∴∠ABE=90°,
∴∠ABE=∠ADC,
∵∠E=∠C,
∴△ABE∽△ADC,
∴,
∴,
∴,
故答案為:.本題考查相似三角形的判定和性質(zhì),勾股定理、圓周角定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題.14、②④【解析】由拋物線開口方向得到a<0,有對稱軸方程得到b=-2a>0,由∵拋物線與y軸的交點位置得到c>0,則可對①進行判斷;由b=-2a可對②進行判斷;利用拋物線的對稱性可得到拋物線與x軸的另一個交點為(3,0),則可判斷當x=2時,y>0,于是可對③進行判斷;通過比較點(-,y1)與點(,y2)到對稱軸的距離可對④進行判斷.【詳解】:∵拋物線開口向下,
∴a<0,
∵拋物線的對稱軸為直線x=-=1,
∴b=-2a>0,
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,所以①錯誤;
∵b=-2a,
∴2a+b=0,所以②正確;
∵拋物線與x軸的一個交點為(-1,0),拋物線的對稱軸為直線x=1,
∴拋物線與x軸的另一個交點為(3,0),
∴當x=2時,y>0,
∴4a+2b+c>0,所以③錯誤;
∵點(-,y1)到對稱軸的距離比點(,y2)對稱軸的距離遠,
∴y1<y2,所以④正確.
故答案為:②④.本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.15、y=(x+2)2-1【分析】根據(jù)左加右減,上加下減的變化規(guī)律運算即可.【詳解】解:按照“左加右減,上加下減”的規(guī)律,向左平移2個單位,將拋物線y=x2先變?yōu)閥=(x+2)2,再沿y軸方向向下平移1個單位拋物線y=(x+2)2即變?yōu)椋簓=(x+2)2?1,故答案為:y=(x+2)2?1.本題考查了拋物線的平移,掌握平移規(guī)律是解題關(guān)鍵.16、1【分析】在Rt△ADC中,利用正弦的定義得sinC==,則可設(shè)AD=12x,所以AC=13x,利用勾股定理計算出DC=5x,由于cos∠DAC=sinC得到tanB=,接著在Rt△ABD中利用正切的定義得到BD=13x,所以13x+5x=12,解得x=,然后利用AD=12x進行計算.【詳解】在Rt△ADC中,sinC==,設(shè)AD=12x,則AC=13x,∴DC==5x,∵cos∠DAC=sinC=,∴tanB=,在Rt△ABD中,∵tanB==,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=,∴AD=12x=1.故答案為1.本題主要考查解直角三角形,熟練掌握銳角三角函數(shù)的定義,是解題的關(guān)鍵.17、y=﹣2x2(答案不唯一)【分析】由題意知,圖象過原點,開口向下則二次項系數(shù)為負數(shù),由此可寫出滿足條件的二次函數(shù)的表達式.【詳解】解:由題意可得:y=﹣2x2(答案不唯一).故答案為:y=﹣2x2(答案不唯一).本題考查了二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.18、2-2【詳解】由題意知:平滑前梯高為4?sin45°=4?=.平滑后高為4?sin60°=4?=.∴升高了m.故答案為.三、解答題(共66分)19、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.20、(1)y=﹣x2+4x+5;(2)1.【分析】(1)由A、C、(1,8)三點在拋物線上,根據(jù)待定系數(shù)法即可求出拋物線的解析式;
(2)由B、C兩點的坐標求得直線BC的解析式;過點M作MN∥y軸交BC軸于點N,則△MCB的面積=△MCN的面積+△MNB的面積=【詳解】(1)∵A(﹣1,0),C(0,5),(1,8)三點在拋物線y=ax2+bx+c上,∴,解方程組,得,故拋物線的解析式為y=﹣x2+4x+5;(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,∴M(2,9),B(5,0),設(shè)直線BC的解析式為:y=kx+b,解得,則直線BC的解析式為:y=﹣x+5.過點M作MN∥y軸交BC軸于點N,則△MCB的面積=△MCN的面積+△MNB的面積=當x=2時,y=﹣2+5=3,則N(2,3),則MN=9﹣3=6,則本題考查拋物線與x軸的交點和待定系數(shù)法求二次函數(shù)解析式,掌握待定系數(shù)法是解題的關(guān)鍵.21、漁船沒有進入養(yǎng)殖場的危險.【解析】試題分析:點B作BM⊥AH于M,過點C作CN⊥AH于N,利用直角三角形的性質(zhì)求得CK的長,若CK>4.8則沒有進入養(yǎng)殖場的危險,否則有危險.試題解析:過點B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.過點C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°設(shè)CK=,則BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴漁船沒有進入養(yǎng)殖場的危險.答:這艘漁船沒有進入養(yǎng)殖場危險.22、(1)y=2x;(2)①點P的坐標為(2,m2﹣2m+4);②當m=1時,線段PB最短;(3)點Q坐標為(2+,6+2)或(2﹣,6﹣2).【分析】(1)根據(jù)點A坐標,用待定系數(shù)法求出直線OA的解析式;(2)①因為點M在線段OA所在直線上,可表示出M的坐標,然后用頂點式表示出二次函數(shù)解析式,代入可求出點P坐標;②對線段PB的長度用完全平方公式可表示出最小值即可;(3)本題關(guān)鍵是如何表示出△QMA的面積,通過設(shè)點Q的坐標可求出△QMA的面積,最終通過解方程可得Q的坐標.【詳解】解:(1)設(shè)OA所在直線的函數(shù)解析式為y=2x,∵A(2,4),∴2k=4?k=2,∴OA所在直線的函數(shù)解析式為y=2x;(2)①∵頂點M的橫坐標為m,且在線段OA上移動,∴y=2m(0≤m≤2),∴頂點M的坐標為(m,2m),∴拋物線函數(shù)解析式為y=(x﹣m)2+2m,∴當x=2時,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴點P的坐標為(2,m2﹣2m+4);②∴|PB|=|m2﹣2m+4|=|(m﹣1)2+3|,∵(m﹣1)2+3≥3,當且僅當m=1時取得最小值,∴當m=1時,線段PB最短;(3)由(2)可得當線段PB最短時,此時點M坐標為(1,2),拋物線解析式為y=(x﹣1)2+2=x2﹣2x+3,假設(shè)拋物線上存在點Q使S△QMA=2S△PMA,設(shè)點Q坐標為(a,a2﹣2a+3),∴S△PMA==,要想符合題意,故S△QMA=1,∴|MA|==,設(shè)點Q到線段MA的距離為h,∴h=,∴S△QMA==1,即=2,即=2或=﹣2,解得a=或a=,∴點Q坐標為(,)或(,).本題考查求函數(shù)解析式和拋物線的知識,會用待定系數(shù)法求函數(shù)解析式,對拋物線的性質(zhì)的運用,是解決本題的關(guān)鍵.23、(1)A(-1,0),;(2);(3)P的坐標為(1,)或(1,-4).【分析】(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直線l經(jīng)過點A,得到,故,令,即,由于CD=4AC,故點D的橫坐標為4,即有,得到,從而得出直線l的函數(shù)表達式;(2)過點E作EF∥y軸,交直線l于點F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以,解得;(3)令,即,解得,,得到D(4,5a),因為拋物線的對稱軸為,設(shè)P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.【詳解】解:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直線l經(jīng)過點A,∴,,∴,令,即,∵CD=4AC,∴點D的橫坐標為4,∴,∴,∴直線l的函數(shù)表達式為;(2)過點E作EF∥y軸,交直線l于點F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴拋物線的對稱軸為,設(shè)P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一條對角線,則線段AD的中點坐標為(,),Q(2,),m=,則P(1,8a),∵四邊形APDQ為矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).綜上所述,以點A、D、P、Q為頂點的四邊形能成為矩形,點P的坐標為(1,)或(1,-4).考點:二次函數(shù)綜合題.24、【解析】根據(jù)方程有兩個不相等的實數(shù)根知△>0,據(jù)此列出關(guān)于m的不等式,求出m的范圍;
再根據(jù)m為正整數(shù)得出m的值即可?!驹斀狻拷猓骸咭辉畏匠?3x+m=0有兩個不相等的實數(shù)根,,∴,∵為正整數(shù),∴.本題考查了一元二次方程根的判別式,關(guān)鍵是掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省延邊州2025-2026學年高一(上)期末物理試卷(含答案)
- 河南省漯河市臨潁縣晨中學校2025-2026學年上學期10月月考八年級數(shù)學試卷(含答案)
- 期中測試卷(含答案含聽力原文無音頻)2025-2026學年人教版英語八年級下冊
- 無常題目及答案
- 望岳的題目及答案
- 新人教版九年級地理上冊期末試卷(及答案)
- 天津博邁科海洋工程有限公司臨港海洋重工建造基地一期工程環(huán)境影響補充報告簡本
- 電氣物聯(lián)網(wǎng)技術(shù)要點
- 雅安滎經(jīng)220kV變電站110kV間隔擴建工程建設(shè)項目環(huán)境影響報告表
- 數(shù)字攝影考試試題及答案
- 河南省信陽市2024-2025學年高二上學期1月期末英語試題(含答案無聽力原文及音頻)
- 給女朋友申請書
- 八下《桃花源記》《小石潭記》全文背誦(原文+譯文)
- 房顫搶救流程護理
- 【8地RJ期末】安徽省蕪湖市2024-2025學年八年級上學期期末考試地理試卷+
- 智能法理學習通超星期末考試答案章節(jié)答案2024年
- 長護險護理培訓課件
- 福建省廈門市2023-2024學年高二上學期期末考試英語試題(解析版)
- 藍絲帶的故事
- 上海市中醫(yī)住院醫(yī)師規(guī)范化培訓細則(年7月12日)
- 樣板加油站打造方案
評論
0/150
提交評論