數(shù)學(xué)數(shù)列高考題目及答案_第1頁
數(shù)學(xué)數(shù)列高考題目及答案_第2頁
數(shù)學(xué)數(shù)列高考題目及答案_第3頁
數(shù)學(xué)數(shù)列高考題目及答案_第4頁
數(shù)學(xué)數(shù)列高考題目及答案_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學(xué)數(shù)列高考題目及答案

單項選擇題(每題2分,共10題)1.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{3}=6\),則公差\(d\)為()A.1B.2C.3D.42.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{2}=2\),則公比\(q\)是()A.1B.2C.3D.43.數(shù)列\(zhòng)(\{a_{n}\}\)通項公式\(a_{n}=3n-1\),則\(a_{5}\)的值為()A.14B.15C.16D.174.等差數(shù)列\(zhòng)(\{a_{n}\}\)前\(n\)項和\(S_{n}\),若\(a_{1}=1\),\(S_{3}=9\),則\(a_{3}\)為()A.3B.4C.5D.65.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=4\),\(a_{5}=16\),則\(a_{4}\)等于()A.8B.-8C.\(\pm8\)D.106.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}+2\),\(a_{1}=1\),則\(a_{4}\)為()A.5B.7C.9D.117.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}+a_{4}=10\),則\(a_{3}\)的值是()A.5B.6C.7D.88.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}a_{9}=25\),則\(a_{5}\)的值為()A.5B.-5C.\(\pm5\)D.109.數(shù)列\(zhòng)(\{a_{n}\}\)通項\(a_{n}=2^{n}\),則\(a_{3}\)是()A.4B.6C.8D.1010.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)為前\(n\)項和,若\(a_{1}=2\),\(S_{2}=6\),則\(S_{3}\)為()A.10B.12C.14D.16多項選擇題(每題2分,共10題)1.以下哪些是等差數(shù)列的性質(zhì)()A.\(a_{n}=a_{1}+(n-1)d\)B.\(a_{m}+a_{n}=a_{p}+a_{q}(m+n=p+q)\)C.\(S_{n}=\frac{n(a_{1}+a_{n})}{2}\)D.\(a_{n}=a_{1}q^{n-1}\)2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,可能成立的是()A.\(a_{1}=1\),\(q=2\)B.\(a_{1}=-1\),\(q=-1\)C.\(a_{1}=0\),\(q=2\)D.\(a_{1}=1\),\(q=0\)3.數(shù)列\(zhòng)(\{a_{n}\}\)通項公式\(a_{n}=n^{2}\),則()A.\(a_{1}=1\)B.\(a_{2}=4\)C.\(a_{3}=9\)D.\(a_{4}=16\)4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{3}=5\),\(d=2\),則()A.\(a_{1}=1\)B.\(a_{2}=3\)C.\(a_{4}=7\)D.\(a_{5}=9\)5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}=4\),則公比\(q\)的值可能是()A.2B.-2C.4D.-46.下列數(shù)列中,哪些是遞增數(shù)列()A.\(a_{n}=n\)B.\(a_{n}=-n\)C.\(a_{n}=2^{n}\)D.\(a_{n}=(\frac{1}{2})^{n}\)7.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則()A.\(a_{1}=1\)B.\(a_{2}=3\)C.\(a_{3}=5\)D.\(a_{4}=7\)8.等比數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{2}a_{8}=16\),則()A.\(a_{5}^{2}=16\)B.\(a_{5}=4\)C.\(a_{5}=-4\)D.\(a_{5}=\pm4\)9.數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n+1}-a_{n}=3\),\(a_{1}=1\),則()A.數(shù)列\(zhòng)(\{a_{n}\}\)是等差數(shù)列B.\(a_{2}=4\)C.\(a_{3}=7\)D.\(a_{4}=10\)10.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,公比\(q\gt1\),則()A.數(shù)列\(zhòng)(\{a_{n}\}\)可能是遞增數(shù)列B.數(shù)列\(zhòng)(\{a_{n}\}\)可能是遞減數(shù)列C.\(a_{n+1}\gta_{n}\)D.\(a_{n+1}\lta_{n}\)判斷題(每題2分,共10題)1.常數(shù)列一定是等差數(shù)列。()2.常數(shù)列一定是等比數(shù)列。()3.若\(a,b,c\)成等差數(shù)列,則\(2b=a+c\)。()4.若\(a,b,c\)成等比數(shù)列,則\(b^{2}=ac\)。()5.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)一定是關(guān)于\(n\)的二次函數(shù)。()6.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}=a_{m}q^{n-m}\)。()7.數(shù)列\(zhòng)(\{a_{n}\}\)通項\(a_{n}=(-1)^{n}\)是擺動數(shù)列。()8.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\gt0\),\(d\lt0\),則數(shù)列遞減。()9.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\gt0\),\(0\ltq\lt1\),則數(shù)列遞減。()10.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}\),則該數(shù)列是常數(shù)列。()簡答題(每題5分,共4題)1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=3\),\(d=2\),求\(a_{n}\)。答案:根據(jù)等差數(shù)列通項公式\(a_{n}=a_{1}+(n-1)d\),將\(a_{1}=3\),\(d=2\)代入得\(a_{n}=3+2(n-1)=2n+1\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(q=3\),求\(a_{4}\)。答案:由等比數(shù)列通項公式\(a_{n}=a_{1}q^{n-1}\),可得\(a_{4}=a_{1}q^{3}=2×3^{3}=2×27=54\)。3.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)前\(n\)項和\(S_{n}=n^{2}+n\),求\(a_{1}\)和\(a_{2}\)。答案:\(n=1\)時,\(a_{1}=S_{1}=1^{2}+1=2\);\(n=2\)時,\(S_{2}=2^{2}+2=6\),\(a_{2}=S_{2}-S_{1}=6-2=4\)。4.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=4\),\(a_{4}=16\),求公比\(q\)。答案:由等比數(shù)列性質(zhì)\(a_{4}=a_{2}q^{2}\),將\(a_{2}=4\),\(a_{4}=16\)代入得\(16=4q^{2}\),\(q^{2}=4\),解得\(q=\pm2\)。討論題(每題5分,共4題)1.討論等差數(shù)列與一次函數(shù)的關(guān)系。答案:等差數(shù)列\(zhòng)(a_{n}=a_{1}+(n-1)d=dn+(a_{1}-d)\),其通項公式是關(guān)于\(n\)的一次函數(shù)形式(\(d\neq0\)時),\(d\)是斜率;\(d=0\)時為常數(shù)列。前\(n\)項和\(S_{n}=An^{2}+Bn\)(\(A=\fracmog2w40{2}\),\(B=a_{1}-\fraciqsmcy4{2}\))是關(guān)于\(n\)的二次函數(shù)(\(d\neq0\))。2.等比數(shù)列的單調(diào)性受哪些因素影響?答案:當(dāng)\(a_{1}\gt0\),\(q\gt1\)或\(a_{1}\lt0\),\(0\ltq\lt1\)時,等比數(shù)列遞增;當(dāng)\(a_{1}\gt0\),\(0\ltq\lt1\)或\(a_{1}\lt0\),\(q\gt1\)時,等比數(shù)列遞減;當(dāng)\(q=1\)時為常數(shù)列;當(dāng)\(q\lt0\)時為擺動數(shù)列。3.如何判斷一個數(shù)列是等差數(shù)列還是等比數(shù)列?答案:判斷等差數(shù)列可看\(a_{n+1}-a_{n}\)是否為常數(shù),或\(2a_{n+1}=a_{n}+a_{n+2}\)是否成立。判斷等比數(shù)列可看\(\frac{a_{n+1}}{a_{n}}\)是否為非零常數(shù),或\(a_{n+1}^{2}=a_{n}a_{n+2}\neq0\)是否成立。4.數(shù)列在實際生活中有哪些應(yīng)用?答案:數(shù)列在貸款、儲蓄、人口增長、資源利用等方面有應(yīng)用。如貸款還款計劃可用等差數(shù)列計算每期還款額;儲蓄復(fù)利計算、細胞分裂等符合等比數(shù)列模型,通過數(shù)列知識能進行預(yù)測和分析。答案單項選擇

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論