2025年人工智能助力供應鏈韌性提升:代理型AI賦能自主運營研究報告(英文版)-IBM_第1頁
2025年人工智能助力供應鏈韌性提升:代理型AI賦能自主運營研究報告(英文版)-IBM_第2頁
2025年人工智能助力供應鏈韌性提升:代理型AI賦能自主運營研究報告(英文版)-IBM_第3頁
2025年人工智能助力供應鏈韌性提升:代理型AI賦能自主運營研究報告(英文版)-IBM_第4頁
2025年人工智能助力供應鏈韌性提升:代理型AI賦能自主運營研究報告(英文版)-IBM_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

IBMInstituteforBusinessValue|ResearchBrief

ScalingsupplychainresiliencewithAI

AgenticAIforautonomousoperations

A

HowIBMcanhelp

IBMhasbeenprovidingexpertisetohelporganizationswin

inthemarketplaceformorethanacentury.Clientscanrealize

thepotentialofAI,analytics,anddatausingIBM’sdeepindustry,functional,andtechnicalexpertise;enterprise-gradetechnologysolutions;andscience-basedresearchinnovations.Formore

informationaboutAIservicesfromIBMConsulting,visit

/services/artificial-intelligence

HowAccelalphacanhelp

Accelalphaimplements,integrates,andmanagesOracleCloud

Applications.Wehelpsolvebusinessproblemswithsupplychainandlogisticsprocesses,procurement,customers’buying

experience,andenterprise-widefinancialplanningandreporting.

Weprovidechangemanagementtostreamlinebusinessprocessessuchasordertocash,procuretopay,andfinancialconsolidation

andclose.Formoreinformation,visit

.

ScalingsupplychainresiliencewithAI2

ScalingsupplychainresiliencewithAI3

Keytakeaways

AgenticAIissuperchargingsupplychainautomation,acceleratingprocessefficiencyfasterthanhumanlypossible,andtakinggrowthtothenextlevel.

AI-enabledsupplychainsdrivevalue.

OrganizationswithhigherAIinvestmentinsupplychainoperationsreport

revenuegrowth61%greaterthantheirpeers.

ExecutivesseeagenticAIasabusinessaccelerator.

62%ofsupplychainleaders

recognizethatAIagentsembedded

intooperationalworkflowsacceleratespeedtoaction,hasteningdecision-making,recommendations,and

communications.

AIautomationishappeningfasterthanyouthink.

70%ofexecutivesstatethatby2026,theiremployeeswillbeabletodrill

deeperintoanalyticstosupport

real-timeanalysisandoptimization

asAIagentsautomateoperational

processes,especiallyinprocurementanddynamicsourcing.

ProcessefficiencygetsanAIboost.

76%ofCSCOssaytheiroverallprocessefficiencywillbeimprovedbyAIagentsthatperformrepetitive,impact-basedtasksatafasterpacethanpeoplecan.

ScalingsupplychainresiliencewithAI4

Introduction

AI-poweredpredictability

andagility—forcemultipliersforsupplychainresilience

Whataresupplychainleadersworriedaboutin2025?Ournewsurveyshows

thatgeopoliticalrisks(61%)andglobaltradetensions(58%)aretheirtoptwo

challenges.Maybeit’snosurprisethattheyareconcernedaboutcontinuing

shockstotheirsupplychains.Eventsinthefirstfewmonthsof2025suggesttheseconcernsaboutdisruptiontotheglobaleconomyandtradearewell-founded.

Butwhatiftheseshockscouldbepreparedfor—withalevelofaccuracyandresilience—thatnotonlydeflectsdisruptionbutactuallycreates

acompetitiveedge?

Turninguncertaintyintoabusinessadvantage

WithAIsolutionsrunningoncloudandembeddedintoenterpriseresource

planning(ERP)platforms,supplychainexecutivesarebetterequippedthanevertoreplaceambiguitywithclarity.Andnext-waveagenticAIcapabilitiesareenablingamuchmoreproactiveoperationalposturethatcombinesgreatercostefficiencieswithmoreagilitytodrivebetterresults.OrganizationsthatseizetheagenticAI

opportunitynowcanmovebeyonddisruptionmanagementandrecastsupplychainoperationsasanengineforgrowth,differentiation,andinnovation.

ScalingsupplychainresiliencewithAI5

EmbeddingAIinto

supplychainoperationsdrivesbusinessvalue

TolearnhowAIisimpactingsupplychainoperations,theIBMInstitutefor

BusinessValue(IBV),inpartnershipwithOxfordEconomics,surveyedmore

than300globalChiefSupplyChainOfficers(CSCOs)andChiefOperationsOfficers(COOs)fromorganizationsimplementingAI-enabledautomation.

Thisresearchbriefshowshoworganizationsaremovingthroughacontinuumofprogressivelygreatercapabilities,builtonAI.

ItstartswithAIprocessautomationandmachinelearning;advancingto

generativeAIinsupplychainworkflows,deliveredbyassistants;and

evolvingintoagenticAI-enabledsupplychainsthatoperateautonomouslyandadaptdynamicallyinrealtimetoreal-worldevents.

ScalingsupplychainresiliencewithAI6

Perspective

Assupplychainoperationsoptimizeworkflows,automate

processes,andsupportgreatercollaborationbetweenAItools

andsupplychainprofessionals,theflywheelofinnovationbeginstospinfaster—infusingnewideas,streamliningbusiness

operationsandreinventingprocessestoenhancecustomer,

partner,andemployeeexperienceswhileharnessingnewrevenueandsupplychainperformanceopportunities.Infact,organizationswithhigherinvestmentinAIforsupplychainoperationsachieve

a61%revenuegrowthpremiumovertheirpeers.

FromAIassistantsto

agenticAI:TheevolutionofAI-poweredautonomy

AIjourneysbeginwithrules-basedsystems,enablingroboticprocessautomation

(RPA)tohandlerepetitivetasksandAIassistantstorespondtoqueries.Assistantsaremakingtheirmarkonbusinessproductivity—especiallyincustomerservice,coding,

andcontentcreation—buttheirquery-basedframeworkslimitcontributionstoworkflowautomationandautonomy.

Overhalfofsupplychain

leaders(53%)areenablingautonomousautomationofintelligentworkflowsvia

self-sufficientAIagents.

AgenticAIbreaksthroughtheselimitationsbyworkingproactivelyandautonomouslytoexecutecomplex,multistepprocesses.AtthecoreofagenticAIarelargelanguagemodelsandfit-for-purposesmalllanguagemodels.Forsupplychains,smalllanguagemodelsmightbespecifictointegratedplanning,globaltrademanagement,supplier

contractnegotiation,ordynamiclogistics.Pairingautonomywithaction,agenticAI

restructuresandoptimizesworkflows,eliminatesunnecessarysteps,andacceleratesdecision-makingtounparalleledlevels(seeFigure1).

SupplychainleadersaredeployingagenticAIrapidlytoattainthesebenefits.Currently,53%ofsupplychainexecutivesareenablingautonomousautomationofintelligent

workflowsviaself-sufficientAIagents,with22%developingtheirproofofconceptand31%alreadyexecutingandscalingproofsofconcept.

ScalingsupplychainresiliencewithAI7

Figure1

AIbenefitssupplychainoperationsatvariouslevelsofmaturity,butagenticAIhastransformativepotential

Typeofimpact

Supplychainexample

Basic

automation

Automatehigh-volume,repetitivetasks.

Integrateorderprocessing,invoicematching,and

shippingnoti?cations.

AI-enabledautomation

Augmentworkforcecapabilities.

Predictivelymonitor

equipmentperformancetopreventbreakdowns.

Interconnectedandintelligentworkflows

ScaleexpertiseandreachwithAIassistants.

IntegrateworkflowswithAIassistantstogivereal-time,personalizedresponsestotransactionalinquiries.

AgenticAI

andautonomy

Orchestrateandexecuteworkflowsautonomously.

UseAIagentstoanalyze

marketconditionsandsales&operationsdatatoadjustproductpricesinrealtime.

ScalingsupplychainresiliencewithAI8

AIassistants:

Lynchpinsofintelligentsupplychainoperations

Forsmarterandfasterdecision-making,supplychainsmusttapintovastamountsofdisconnecteddata.Historically,thishasbeenasignificant

challenge.Butnow,criticalinsightsfromoperationaldatacanbesurfacedrapidly—andmoreeasilythanever—whenthecapabilitiesofemployees

areenhancedbyAI-powereddigitalassistants.

SynergybetweenpeopleandAItouchesvirtuallyeverysupplychainlink,fromplanningandsourcingtomanufacturinganddistribution.Infact,

70%ofCSCOssaygenAIhasenhancedtheirresponsivenessand

communicationswithcustomers.And55%oforganizationssaygenAIvalidatesandaggregatesinformationreliablyforemployees.Thatfigurerisesto69%fororganizationsmakinghigherAIinvestmentsinsupply

chainoperations.

AsexecutivesexperimentwithandoptimizegenAI’sapplicationinsupply

chainoperations,theyfindthatsomeareasbenefitmorethanothers.Today,theyreportthatoperationalperformance(67%)isthetopbenefitfrom

investingingenAI,whilepredictabilityandresponsivenesstooperationaldisruptions(60%)rankssecond.

Forexample,alargeglobalmanufacturerisseeingsignificantimprovementsintradecomplianceandlogisticsoperationsbyusingaglobaltrademanagementsolution,embeddedwithAI.Automatedcustomsdeclarationsforimports

replacemanualprocessesandreducethetimetoclearcustoms.And

AI-poweredupdatesaddnewcapabilities,suchasauser-configurableplatformthatcanprovidetradeincentiveprocessingreliefandreporting.1

ThosemakinglargerAIinvestmentsinsupplychainoperationsseeadditionalcapabilitieswithinreach.Forexample,executivesinleadingorganizationssaythatgenAIwillenableimprovedsupplychainmanagement68%more

frequentlythanpeers.TheyalsoexpectgenAI-enabledvisualizationand

simulationtouncoverbottlenecksinrealtime61%morefrequently;andtheyanticipategenAIwillaccelerateinnovationforsupplychainproductdesign

36%morefrequently.

AgenticAIoperatingmodels

proactivelyrespondto

disruptions,makeforecasts

moreaccurately,andprovidegreatervisibilityacrosssupplychainecosystems.

ScalingsupplychainresiliencewithAI9

ScalingsupplychainresiliencewithAI10

Buildingautonomousadvantage:TheagenticAIoperatingmodelforsupplychains

Whetheritisdisruptiontoglobaltrade,climate-relatedevents,geopolitical

conflict,inflationorsystemiccomplexity,supplychainexecutivesare

accountableforfindingworkarounds.74%oftheseleaderssaygenAIenablesbettervisibility,insights,anddecision-makingacrossecosystems.Togo

further,theseleadersareturningtoagenticAIsolutionstoactautonomouslyonthoseinsightstohelpmakeoperationsmoreagile,adaptive,andresilient.

Now,forthefirsttime,maturityinagenticAItechnologyenablessupplychainorganizationstobuildacomprehensiveagenticAIoperatingmodel(seeFigure2).Configuredtomeetthedynamic,data-driven,andcomplexrequirements

ofsupplychainoperations,thismodelrepresentsanewwayforsupplychainleaderstoachieveoperationalresilience,notonlyinsidetheirown

organizationsbutacrossentirepartnerecosystems.

ThereasonagenticAIoperatingmodelcapabilitiesextendbeyondAI

automationandassistanceisfundamental—thesemodelsarepoweredby

muchmoredatafrommanymoresources.AgenticAImodelsstartwith

operationaldatafromERPapplicationsandfit-for-purposesupplychainapps.Theyalsoincludeagent-to-agentinterfaceswithecosystempartnersandtapintoexternaldatasources,suchasweatherreports,marketindexes,and

geopoliticalevents.

ScalingsupplychainresiliencewithAI11

Figure2

AgenticAIsupplychainoperatingmodel

Supplychainandenterpriseapplications

ERP.CRM.Integratedplanning.SLM?t-for

purposemodels.Legacysystems,EnterpriseandecosystemAPIs.

Agenticautomation

Ecosystempartnersystems

ERP.Transportationmanagementsystem(TMS),Warehousemanagementsystem,(WMS)Inventorymanagement.

Dataintegrationengine

Predictiveanalytics

andoptimizationengine

Impactevaluation

Externaldata

Feedbackloopand

decision-supportanalyzer

Sensors:Manufacturing,transportation,

environmental,security,weather,economicindices,markettrends,geopoliticalevents.

Riskanalyzer

Machine-humancollaborator

Integratedplanning

Predictivedemandandsupplyplanning–analyzingexternalfactorsandcurrentconditions.

Global.Enterprisewide+Ecosystempartner’ssystems.Agenttoagent.

Procurementoptimization

Dynamicsourcinginreal-timebasedonchangingmarketconditions,demand,suppliercapacity.

Supplierriskmitigationanalysisandstrategies.

Inventoryoptimization

AutomaticreplenishmentactionsacrossallinventorytypesandSKUswithsensorandlocationtracking.

Inventorybalancingbaseduponreal-timevariabilities.

Productionoptimization

Intelligentyieldpredictionwithvariableanalysisofresources,assetsandenvironmentfactors.

Rawmaterialand?nishedgoodsplantandful?llmentallocation.

Logisticsoptimization

Transportationoptimizationwithdynamicre-routingbasedontraf?c,weather,and

customersegmentation.

Roboticsandautomatedguidedvehiclesfordistributionactivities.

Customerand?eldserviceautomation

24/7customerand?eldservicesresponsivenesswithpersonalizedcustomerexperiences.

Aggregatedcustomerfeedbackanalysisfrommultiplechannels.

ScalingsupplychainresiliencewithAI12

AgenticAIoperatingmodelsproactivelyrespondtodisruptions,makeforecastsmoreaccurately,andprovidegreatervisibility

acrosssupplychainecosystems.

Forexample,autonomousagentsworkingwithinthe

agenticAIoperatingmodelcanperformcoresupplychainassignmentssuchasadaptingtochangingmarket

conditions,reroutingshipments,negotiatingwith

suppliers,andmitigatingrisksinrealtime—allwithoutdependingonpeopletomakedecisionsormanually

intervene.InitialanalysisintoagenticAIdeploymentpointstostrongusageontasksrelatedtodynamic

sourcinginprocurementworkflows,basedonmarketdemandandsuppliercapability.

Allthiscanfreeupmoretimeforpeopletoworkonstrategicdevelopmentandcustomerrelationships.AndtheseexamplesarejustastartasorganizationslearnmoreaboutwhatagenticAIcandointheir

operationalenvironments.

Poweredbyadataintegrationengineandinteracting

directlywithsupplychainsystems,agenticautomationprovidestoolsforpredictiveanalytics,workflow

optimization,impactevaluation,riskanalysis,

anddecisionsupport.Agenticautomationalsorelies

onclosecollaborationbetweenpeopleandtheirdigitaltools,aswellasamongteammembersworkingacrossorganizationsandpartnerecosystems.

ScalingsupplychainresiliencewithAI13

Inasupplychainenvironment,anagenticAIoperatingmodelanalyzescurrent

conditionsandexternalfactorsintegratingdemandpredictionandsupplyplanning.Themodeloptimizesprocurementthroughreal-timedynamicsourcing,basedonchangingmarketconditions,andoptimizesinventoryacrossSKUswithsensorandlocation

tracking.Andwhenitcomestooptimizingproduction,anagenticAIoperatingmodelpredictsyieldswhileanalyzingresources,assets,andenvironmentalfactors.

Inthelogisticsspace,theagenticAIoperatingmodeloptimizestransportationwithdynamicreroutingbasedontrafficandweatherconditionsandcustomersegments.Andforcustomerandfieldserviceautomation,themodelaggregatescustomer

feedbackandrespondswithpersonalizedcustomerexperiences.

OneofthekeyattributesofanagenticAIoperatingmodelforsupplychainsisits

flexibility.Theseframeworkscanbeseamlesslyintegratedwithexistinganalyticstools,suchasinventoryandtransportationmanagementsystems,potentiallymakingan

immediateimpactonoverallsupplychainperformance.

By2026,57%ofexecutivesexpectagenticAIwillmakeproactiverecommendationsbasedonwhatitlearns,and62%expectAIagentswillmakesupplychainprocess

automationandworkflowreinventioneffortsmoreeffective.Additionally,76%ofCSCOssaytheiroverallprocessefficiencywillbeimprovedbyagentsthatperformrepetitive,impact-basedtasksfasterthanhumanscan.

EmployeesworkingwithagenticAIwillbemoreinvolvedthanevertohelpensuresafe,responsible,andaccuratesupplychainoperations.Andforthisinvolvementtobe

successful,eachemployeemustbeheldaccountableandbedeeplyinvolvedin

orchestratingagenticAIoutcomes.AsAIagentsarewoventighterintosupplychain

workflows,theirlevelofautonomyshouldbecloselymonitoredbypeopleandadjustedasneeded.

AssupplychainsseekdifferentiatedoutcomesfromagenticAI,they’llneedtobalanceinnovation,speed,andgovernancetodrivegreaterconsistencyinthevaluecapturedby

improvedworkflows.Understandinghowthemodelcandelivervaluestartswithreal-timevisualizationofanagenticAIoperatingmodelacrossalldimensions.

Visualizingoperationsbeginswithlookingathowdataflowsintoaplatform—typicallythroughanERPsystem—withageospatial,informational,andanorchestration

analyzer.Next,agenticAI-enabledvirtualmodelssimulatehowspecificeventscould

impactsupplychainoperations.Agentsevaluatedifferentscenariosandmodel

potentialproblemsthatmightresult—suchasglobaltradeimbalances,costspikes,andmaterialshortages—andgenerateplanstomitigatedisruptions.

Withperspectivesprovidedbyproactivesimulations,supplychainleaderscanpivotquicklytomakebetterdecisions,capitalizeonemergingopportunities,andshare

insightsquicklyacrosssupplierecosystemstoscaleinnovation(seeFigure3).

ScalingsupplychainresiliencewithAI14

Figure3

AgenticAIacceleratesinnovation

Innovation

AIagentsautonomouslyexecuteinterconnected

supplychainworkflows

acrossecosystems.

Action

Fliptheagenticpropositionfromreactiontopro-actiontodrivenewopportunitiesforgrowth.

Evaluation

Agenticmodelsevaluate

scenariostoanticipate

problemsandgenerateplanstomitigatedisruptions.

Simulation

AgenticAI-enabledvirtualmodelssimulatereal-worldeventimpactsonsupply

chainoperations.

ScalingsupplychainresiliencewithAI15

Actionguide

Bytappingintoindustry-specificdatageneratedbyERPplatforms,CSCOscanuse

genAIassistantsandAIagentstodevelopnewbusinessstrategies,streamline

productdevelopment,andoptimizeglobaloperations.Asmultiagentsanalyze

historicaldataandcurrenttrendstopredictfutureoutcomes,theseAI-informed

resourcescananticipatedemand,managerisksbetter,andplaninventorymore

effectively.Inaddition,theautonomouscapabilitiesofagenticAIenablecontinuousself-adjustmentbasedonreal-timedata,helpingtoensurethatsupplychainscan

swiftlyadapttounexpectedevents.

TheagenticAItrainispickingupspeed—63%ofCSCOssaythatbynextyear,AIagentswillcontinuouslyimprovesupplychainperformancebymakingfeedback-based

adjustments.Butbewareoftherisks:executivesciteconcernsarounddataaccuracyorbias(72%)anddatasecurityandprivacy(63%)asthetopchallengesforgenAIinsupplychainoperations.

ScalingsupplychainresiliencewithAI16

GetseriousaboutdevelopinganagenticAIoperatingmodelforyoursupplychain.

–EvaluatecurrentoperationstofindoutwhereagenticAI

canbringthemostvalue.Identifyyourchallengeswithdata,

workforcere-skillingandgovernancemodels.ClearlyarticulatethebusinessimpactyouaimtoachieveanddevelopKPIsandothermeasurementstotrackprogressagainstyourgoals.

–Assembleadiverseteamincludingdatascientists,supply

chainexperts,ITprofessionals,andotherdepartmental

leaders.MakethemresponsiblefordesigningandimplementingyouragenticAIoperatingmodel.Startsmallwithproofsof

concept,trackprogress,andscalequicklytodeployagenticAIsolutionsacrossyoursupplychain.

–Focusonautonomy,granularity,networkresilience,intelligentinterfaces,transparency,andcollaboration.Integrateethics

intotheAIoperatingmodeltosupportsupplychainpracticesthatarefair,transparent,andsociallyresponsible,andbuildbrandreputationandtrustwithcustomersandstakeholders.

EmpowersupplychainoperationswithagenticAI.

–EstablishKPIsforyourAIagentsandassignyourpeople

tomonitortheirperformance.Empoweryourpeopletoset

workflowoptimizationgoalsforAIagents,basedonbusiness

impact.Also,putyourpeopleinchargeofcontinuously

evaluatinghowwellAIagentsaremeetingpreassignedbusinessgoals.LeverageobjectivelysuccessfulagenticAIapplicationsasablueprintforfurtherinnovationinsupplychainactivities.

–Deployagentsthroughoutyourecosystemtoamplifyimpact

andreducecost.ImplementAIagentoperatingtasksacross

thespectrumofsupplychainworkflows—especiallythose

representedbyyourglobalpartners.MaphowyourAIagents

willworktogethertooptimizeexistingworkflows,createnew

workflows,andextendpartnercommunications—allinrealtime.EngagewithecosystempartnerstomutuallyassessandsupporteachotherinpursuitofagenticAIcapabilitiesthatgobeyond

thewallsofyourownenterprise.

–Taskagentstotransformdatafromroadblocktoaccelerator.

UseAIagentstoexplore,create,andtesthypotheticalwhat-

ifscenariosderivedfromextensiveproprietarydataand

organizationalexperience.Empoweragentstoautonomously

orchestrateactionsrequiredtoprepareforthemostimpactfulandlikelyscenarios.Developmechanismstomeasurethevalueofagentic-leddisruptionavoidancetosetabenchmarkfor

continuousagentimprovement.

ScalingsupplychainresiliencewithAI17

Authors

GeraldJackson

VicePresident,SCSolutionsStrategyandInnovation,Oracle

/in/gerald-jackson-8377831/

gerald.jackson@

Gerald’scareerfocusistohelpclientsunlockthefullpotentialofsupplychains

throughadvancedtechnology,data,humanenablement,andseamlessintegrationacrossfunctionalprocesses.HesharestheOraclevisiontoharnessthepowerof

moderntechnologyandrethinkcustomersupplychainstobesmarter,moresustainable,productive,andresilient.

ChiPark

SeniorSolutionsDirector,SupplyChangeManagement,Accelalpha

/in/chi-park/

chi.park@

Chiisasupplychainindustryveteranwith18yearsextensiveknowledgeofOracle

ERPandSupplyChainManagementapplicationsrangingfromsalesandoperations

planning,constraint-basedsupplychainanddistributionrequirementsplanning,

finiteproductionscheduling,discreteandprocessmanufacturing,ordermanagement,inventorymanagement,productlifecyclemanagement,andprocurement.Hispurposeisadvisingclientsinelevatingextendedsupplychainstothenextmaturitylevels,

includingAIautomations.

PushpinderSingh

Partner,GlobalSupplyChainTransformationLeader,IBMConsulting

/in/pushpindersingh/

p

ushpinder.singh@

Pushpinderpartnerswithleadingorganizationsworldwidetoacceleratetheirsupplychainperformance.Asastrategicadvisor,hebringsover24yearsofexperience,

drivingimpactfulchangeandlong-termvaluecreationforthenextgenerationof

supplychainleaders.Heispassionateaboutleveragingtechnologytosolvecomplexsupplychainchallenges.

KarenButner

GlobalResearchLeader,SupplyChainAIAutomation,IBMInstituteforBusinessValue

/in/karenvbutner/

kbutner@

Karenisresponsibleformarketinsights,trends,andleading

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論