版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
IBMInstituteforBusinessValue|ResearchBrief
ScalingsupplychainresiliencewithAI
AgenticAIforautonomousoperations
A
HowIBMcanhelp
IBMhasbeenprovidingexpertisetohelporganizationswin
inthemarketplaceformorethanacentury.Clientscanrealize
thepotentialofAI,analytics,anddatausingIBM’sdeepindustry,functional,andtechnicalexpertise;enterprise-gradetechnologysolutions;andscience-basedresearchinnovations.Formore
informationaboutAIservicesfromIBMConsulting,visit
/services/artificial-intelligence
HowAccelalphacanhelp
Accelalphaimplements,integrates,andmanagesOracleCloud
Applications.Wehelpsolvebusinessproblemswithsupplychainandlogisticsprocesses,procurement,customers’buying
experience,andenterprise-widefinancialplanningandreporting.
Weprovidechangemanagementtostreamlinebusinessprocessessuchasordertocash,procuretopay,andfinancialconsolidation
andclose.Formoreinformation,visit
.
ScalingsupplychainresiliencewithAI2
ScalingsupplychainresiliencewithAI3
Keytakeaways
AgenticAIissuperchargingsupplychainautomation,acceleratingprocessefficiencyfasterthanhumanlypossible,andtakinggrowthtothenextlevel.
AI-enabledsupplychainsdrivevalue.
OrganizationswithhigherAIinvestmentinsupplychainoperationsreport
revenuegrowth61%greaterthantheirpeers.
ExecutivesseeagenticAIasabusinessaccelerator.
62%ofsupplychainleaders
recognizethatAIagentsembedded
intooperationalworkflowsacceleratespeedtoaction,hasteningdecision-making,recommendations,and
communications.
AIautomationishappeningfasterthanyouthink.
70%ofexecutivesstatethatby2026,theiremployeeswillbeabletodrill
deeperintoanalyticstosupport
real-timeanalysisandoptimization
asAIagentsautomateoperational
processes,especiallyinprocurementanddynamicsourcing.
ProcessefficiencygetsanAIboost.
76%ofCSCOssaytheiroverallprocessefficiencywillbeimprovedbyAIagentsthatperformrepetitive,impact-basedtasksatafasterpacethanpeoplecan.
ScalingsupplychainresiliencewithAI4
Introduction
AI-poweredpredictability
andagility—forcemultipliersforsupplychainresilience
Whataresupplychainleadersworriedaboutin2025?Ournewsurveyshows
thatgeopoliticalrisks(61%)andglobaltradetensions(58%)aretheirtoptwo
challenges.Maybeit’snosurprisethattheyareconcernedaboutcontinuing
shockstotheirsupplychains.Eventsinthefirstfewmonthsof2025suggesttheseconcernsaboutdisruptiontotheglobaleconomyandtradearewell-founded.
Butwhatiftheseshockscouldbepreparedfor—withalevelofaccuracyandresilience—thatnotonlydeflectsdisruptionbutactuallycreates
acompetitiveedge?
Turninguncertaintyintoabusinessadvantage
WithAIsolutionsrunningoncloudandembeddedintoenterpriseresource
planning(ERP)platforms,supplychainexecutivesarebetterequippedthanevertoreplaceambiguitywithclarity.Andnext-waveagenticAIcapabilitiesareenablingamuchmoreproactiveoperationalposturethatcombinesgreatercostefficiencieswithmoreagilitytodrivebetterresults.OrganizationsthatseizetheagenticAI
opportunitynowcanmovebeyonddisruptionmanagementandrecastsupplychainoperationsasanengineforgrowth,differentiation,andinnovation.
ScalingsupplychainresiliencewithAI5
EmbeddingAIinto
supplychainoperationsdrivesbusinessvalue
TolearnhowAIisimpactingsupplychainoperations,theIBMInstitutefor
BusinessValue(IBV),inpartnershipwithOxfordEconomics,surveyedmore
than300globalChiefSupplyChainOfficers(CSCOs)andChiefOperationsOfficers(COOs)fromorganizationsimplementingAI-enabledautomation.
Thisresearchbriefshowshoworganizationsaremovingthroughacontinuumofprogressivelygreatercapabilities,builtonAI.
ItstartswithAIprocessautomationandmachinelearning;advancingto
generativeAIinsupplychainworkflows,deliveredbyassistants;and
evolvingintoagenticAI-enabledsupplychainsthatoperateautonomouslyandadaptdynamicallyinrealtimetoreal-worldevents.
ScalingsupplychainresiliencewithAI6
Perspective
Assupplychainoperationsoptimizeworkflows,automate
processes,andsupportgreatercollaborationbetweenAItools
andsupplychainprofessionals,theflywheelofinnovationbeginstospinfaster—infusingnewideas,streamliningbusiness
operationsandreinventingprocessestoenhancecustomer,
partner,andemployeeexperienceswhileharnessingnewrevenueandsupplychainperformanceopportunities.Infact,organizationswithhigherinvestmentinAIforsupplychainoperationsachieve
a61%revenuegrowthpremiumovertheirpeers.
FromAIassistantsto
agenticAI:TheevolutionofAI-poweredautonomy
AIjourneysbeginwithrules-basedsystems,enablingroboticprocessautomation
(RPA)tohandlerepetitivetasksandAIassistantstorespondtoqueries.Assistantsaremakingtheirmarkonbusinessproductivity—especiallyincustomerservice,coding,
andcontentcreation—buttheirquery-basedframeworkslimitcontributionstoworkflowautomationandautonomy.
Overhalfofsupplychain
leaders(53%)areenablingautonomousautomationofintelligentworkflowsvia
self-sufficientAIagents.
AgenticAIbreaksthroughtheselimitationsbyworkingproactivelyandautonomouslytoexecutecomplex,multistepprocesses.AtthecoreofagenticAIarelargelanguagemodelsandfit-for-purposesmalllanguagemodels.Forsupplychains,smalllanguagemodelsmightbespecifictointegratedplanning,globaltrademanagement,supplier
contractnegotiation,ordynamiclogistics.Pairingautonomywithaction,agenticAI
restructuresandoptimizesworkflows,eliminatesunnecessarysteps,andacceleratesdecision-makingtounparalleledlevels(seeFigure1).
SupplychainleadersaredeployingagenticAIrapidlytoattainthesebenefits.Currently,53%ofsupplychainexecutivesareenablingautonomousautomationofintelligent
workflowsviaself-sufficientAIagents,with22%developingtheirproofofconceptand31%alreadyexecutingandscalingproofsofconcept.
ScalingsupplychainresiliencewithAI7
Figure1
AIbenefitssupplychainoperationsatvariouslevelsofmaturity,butagenticAIhastransformativepotential
Typeofimpact
Supplychainexample
Basic
automation
Automatehigh-volume,repetitivetasks.
Integrateorderprocessing,invoicematching,and
shippingnoti?cations.
AI-enabledautomation
Augmentworkforcecapabilities.
Predictivelymonitor
equipmentperformancetopreventbreakdowns.
Interconnectedandintelligentworkflows
ScaleexpertiseandreachwithAIassistants.
IntegrateworkflowswithAIassistantstogivereal-time,personalizedresponsestotransactionalinquiries.
AgenticAI
andautonomy
Orchestrateandexecuteworkflowsautonomously.
UseAIagentstoanalyze
marketconditionsandsales&operationsdatatoadjustproductpricesinrealtime.
ScalingsupplychainresiliencewithAI8
AIassistants:
Lynchpinsofintelligentsupplychainoperations
Forsmarterandfasterdecision-making,supplychainsmusttapintovastamountsofdisconnecteddata.Historically,thishasbeenasignificant
challenge.Butnow,criticalinsightsfromoperationaldatacanbesurfacedrapidly—andmoreeasilythanever—whenthecapabilitiesofemployees
areenhancedbyAI-powereddigitalassistants.
SynergybetweenpeopleandAItouchesvirtuallyeverysupplychainlink,fromplanningandsourcingtomanufacturinganddistribution.Infact,
70%ofCSCOssaygenAIhasenhancedtheirresponsivenessand
communicationswithcustomers.And55%oforganizationssaygenAIvalidatesandaggregatesinformationreliablyforemployees.Thatfigurerisesto69%fororganizationsmakinghigherAIinvestmentsinsupply
chainoperations.
AsexecutivesexperimentwithandoptimizegenAI’sapplicationinsupply
chainoperations,theyfindthatsomeareasbenefitmorethanothers.Today,theyreportthatoperationalperformance(67%)isthetopbenefitfrom
investingingenAI,whilepredictabilityandresponsivenesstooperationaldisruptions(60%)rankssecond.
Forexample,alargeglobalmanufacturerisseeingsignificantimprovementsintradecomplianceandlogisticsoperationsbyusingaglobaltrademanagementsolution,embeddedwithAI.Automatedcustomsdeclarationsforimports
replacemanualprocessesandreducethetimetoclearcustoms.And
AI-poweredupdatesaddnewcapabilities,suchasauser-configurableplatformthatcanprovidetradeincentiveprocessingreliefandreporting.1
ThosemakinglargerAIinvestmentsinsupplychainoperationsseeadditionalcapabilitieswithinreach.Forexample,executivesinleadingorganizationssaythatgenAIwillenableimprovedsupplychainmanagement68%more
frequentlythanpeers.TheyalsoexpectgenAI-enabledvisualizationand
simulationtouncoverbottlenecksinrealtime61%morefrequently;andtheyanticipategenAIwillaccelerateinnovationforsupplychainproductdesign
36%morefrequently.
AgenticAIoperatingmodels
proactivelyrespondto
disruptions,makeforecasts
moreaccurately,andprovidegreatervisibilityacrosssupplychainecosystems.
ScalingsupplychainresiliencewithAI9
ScalingsupplychainresiliencewithAI10
Buildingautonomousadvantage:TheagenticAIoperatingmodelforsupplychains
Whetheritisdisruptiontoglobaltrade,climate-relatedevents,geopolitical
conflict,inflationorsystemiccomplexity,supplychainexecutivesare
accountableforfindingworkarounds.74%oftheseleaderssaygenAIenablesbettervisibility,insights,anddecision-makingacrossecosystems.Togo
further,theseleadersareturningtoagenticAIsolutionstoactautonomouslyonthoseinsightstohelpmakeoperationsmoreagile,adaptive,andresilient.
Now,forthefirsttime,maturityinagenticAItechnologyenablessupplychainorganizationstobuildacomprehensiveagenticAIoperatingmodel(seeFigure2).Configuredtomeetthedynamic,data-driven,andcomplexrequirements
ofsupplychainoperations,thismodelrepresentsanewwayforsupplychainleaderstoachieveoperationalresilience,notonlyinsidetheirown
organizationsbutacrossentirepartnerecosystems.
ThereasonagenticAIoperatingmodelcapabilitiesextendbeyondAI
automationandassistanceisfundamental—thesemodelsarepoweredby
muchmoredatafrommanymoresources.AgenticAImodelsstartwith
operationaldatafromERPapplicationsandfit-for-purposesupplychainapps.Theyalsoincludeagent-to-agentinterfaceswithecosystempartnersandtapintoexternaldatasources,suchasweatherreports,marketindexes,and
geopoliticalevents.
ScalingsupplychainresiliencewithAI11
Figure2
AgenticAIsupplychainoperatingmodel
Supplychainandenterpriseapplications
ERP.CRM.Integratedplanning.SLM?t-for
purposemodels.Legacysystems,EnterpriseandecosystemAPIs.
Agenticautomation
Ecosystempartnersystems
ERP.Transportationmanagementsystem(TMS),Warehousemanagementsystem,(WMS)Inventorymanagement.
Dataintegrationengine
Predictiveanalytics
andoptimizationengine
Impactevaluation
Externaldata
Feedbackloopand
decision-supportanalyzer
Sensors:Manufacturing,transportation,
environmental,security,weather,economicindices,markettrends,geopoliticalevents.
Riskanalyzer
Machine-humancollaborator
Integratedplanning
Predictivedemandandsupplyplanning–analyzingexternalfactorsandcurrentconditions.
Global.Enterprisewide+Ecosystempartner’ssystems.Agenttoagent.
Procurementoptimization
Dynamicsourcinginreal-timebasedonchangingmarketconditions,demand,suppliercapacity.
Supplierriskmitigationanalysisandstrategies.
Inventoryoptimization
AutomaticreplenishmentactionsacrossallinventorytypesandSKUswithsensorandlocationtracking.
Inventorybalancingbaseduponreal-timevariabilities.
Productionoptimization
Intelligentyieldpredictionwithvariableanalysisofresources,assetsandenvironmentfactors.
Rawmaterialand?nishedgoodsplantandful?llmentallocation.
Logisticsoptimization
Transportationoptimizationwithdynamicre-routingbasedontraf?c,weather,and
customersegmentation.
Roboticsandautomatedguidedvehiclesfordistributionactivities.
Customerand?eldserviceautomation
24/7customerand?eldservicesresponsivenesswithpersonalizedcustomerexperiences.
Aggregatedcustomerfeedbackanalysisfrommultiplechannels.
ScalingsupplychainresiliencewithAI12
AgenticAIoperatingmodelsproactivelyrespondtodisruptions,makeforecastsmoreaccurately,andprovidegreatervisibility
acrosssupplychainecosystems.
Forexample,autonomousagentsworkingwithinthe
agenticAIoperatingmodelcanperformcoresupplychainassignmentssuchasadaptingtochangingmarket
conditions,reroutingshipments,negotiatingwith
suppliers,andmitigatingrisksinrealtime—allwithoutdependingonpeopletomakedecisionsormanually
intervene.InitialanalysisintoagenticAIdeploymentpointstostrongusageontasksrelatedtodynamic
sourcinginprocurementworkflows,basedonmarketdemandandsuppliercapability.
Allthiscanfreeupmoretimeforpeopletoworkonstrategicdevelopmentandcustomerrelationships.AndtheseexamplesarejustastartasorganizationslearnmoreaboutwhatagenticAIcandointheir
operationalenvironments.
Poweredbyadataintegrationengineandinteracting
directlywithsupplychainsystems,agenticautomationprovidestoolsforpredictiveanalytics,workflow
optimization,impactevaluation,riskanalysis,
anddecisionsupport.Agenticautomationalsorelies
onclosecollaborationbetweenpeopleandtheirdigitaltools,aswellasamongteammembersworkingacrossorganizationsandpartnerecosystems.
ScalingsupplychainresiliencewithAI13
Inasupplychainenvironment,anagenticAIoperatingmodelanalyzescurrent
conditionsandexternalfactorsintegratingdemandpredictionandsupplyplanning.Themodeloptimizesprocurementthroughreal-timedynamicsourcing,basedonchangingmarketconditions,andoptimizesinventoryacrossSKUswithsensorandlocation
tracking.Andwhenitcomestooptimizingproduction,anagenticAIoperatingmodelpredictsyieldswhileanalyzingresources,assets,andenvironmentalfactors.
Inthelogisticsspace,theagenticAIoperatingmodeloptimizestransportationwithdynamicreroutingbasedontrafficandweatherconditionsandcustomersegments.Andforcustomerandfieldserviceautomation,themodelaggregatescustomer
feedbackandrespondswithpersonalizedcustomerexperiences.
OneofthekeyattributesofanagenticAIoperatingmodelforsupplychainsisits
flexibility.Theseframeworkscanbeseamlesslyintegratedwithexistinganalyticstools,suchasinventoryandtransportationmanagementsystems,potentiallymakingan
immediateimpactonoverallsupplychainperformance.
By2026,57%ofexecutivesexpectagenticAIwillmakeproactiverecommendationsbasedonwhatitlearns,and62%expectAIagentswillmakesupplychainprocess
automationandworkflowreinventioneffortsmoreeffective.Additionally,76%ofCSCOssaytheiroverallprocessefficiencywillbeimprovedbyagentsthatperformrepetitive,impact-basedtasksfasterthanhumanscan.
EmployeesworkingwithagenticAIwillbemoreinvolvedthanevertohelpensuresafe,responsible,andaccuratesupplychainoperations.Andforthisinvolvementtobe
successful,eachemployeemustbeheldaccountableandbedeeplyinvolvedin
orchestratingagenticAIoutcomes.AsAIagentsarewoventighterintosupplychain
workflows,theirlevelofautonomyshouldbecloselymonitoredbypeopleandadjustedasneeded.
AssupplychainsseekdifferentiatedoutcomesfromagenticAI,they’llneedtobalanceinnovation,speed,andgovernancetodrivegreaterconsistencyinthevaluecapturedby
improvedworkflows.Understandinghowthemodelcandelivervaluestartswithreal-timevisualizationofanagenticAIoperatingmodelacrossalldimensions.
Visualizingoperationsbeginswithlookingathowdataflowsintoaplatform—typicallythroughanERPsystem—withageospatial,informational,andanorchestration
analyzer.Next,agenticAI-enabledvirtualmodelssimulatehowspecificeventscould
impactsupplychainoperations.Agentsevaluatedifferentscenariosandmodel
potentialproblemsthatmightresult—suchasglobaltradeimbalances,costspikes,andmaterialshortages—andgenerateplanstomitigatedisruptions.
Withperspectivesprovidedbyproactivesimulations,supplychainleaderscanpivotquicklytomakebetterdecisions,capitalizeonemergingopportunities,andshare
insightsquicklyacrosssupplierecosystemstoscaleinnovation(seeFigure3).
ScalingsupplychainresiliencewithAI14
Figure3
AgenticAIacceleratesinnovation
Innovation
AIagentsautonomouslyexecuteinterconnected
supplychainworkflows
acrossecosystems.
Action
Fliptheagenticpropositionfromreactiontopro-actiontodrivenewopportunitiesforgrowth.
Evaluation
Agenticmodelsevaluate
scenariostoanticipate
problemsandgenerateplanstomitigatedisruptions.
Simulation
AgenticAI-enabledvirtualmodelssimulatereal-worldeventimpactsonsupply
chainoperations.
ScalingsupplychainresiliencewithAI15
Actionguide
Bytappingintoindustry-specificdatageneratedbyERPplatforms,CSCOscanuse
genAIassistantsandAIagentstodevelopnewbusinessstrategies,streamline
productdevelopment,andoptimizeglobaloperations.Asmultiagentsanalyze
historicaldataandcurrenttrendstopredictfutureoutcomes,theseAI-informed
resourcescananticipatedemand,managerisksbetter,andplaninventorymore
effectively.Inaddition,theautonomouscapabilitiesofagenticAIenablecontinuousself-adjustmentbasedonreal-timedata,helpingtoensurethatsupplychainscan
swiftlyadapttounexpectedevents.
TheagenticAItrainispickingupspeed—63%ofCSCOssaythatbynextyear,AIagentswillcontinuouslyimprovesupplychainperformancebymakingfeedback-based
adjustments.Butbewareoftherisks:executivesciteconcernsarounddataaccuracyorbias(72%)anddatasecurityandprivacy(63%)asthetopchallengesforgenAIinsupplychainoperations.
ScalingsupplychainresiliencewithAI16
GetseriousaboutdevelopinganagenticAIoperatingmodelforyoursupplychain.
–EvaluatecurrentoperationstofindoutwhereagenticAI
canbringthemostvalue.Identifyyourchallengeswithdata,
workforcere-skillingandgovernancemodels.ClearlyarticulatethebusinessimpactyouaimtoachieveanddevelopKPIsandothermeasurementstotrackprogressagainstyourgoals.
–Assembleadiverseteamincludingdatascientists,supply
chainexperts,ITprofessionals,andotherdepartmental
leaders.MakethemresponsiblefordesigningandimplementingyouragenticAIoperatingmodel.Startsmallwithproofsof
concept,trackprogress,andscalequicklytodeployagenticAIsolutionsacrossyoursupplychain.
–Focusonautonomy,granularity,networkresilience,intelligentinterfaces,transparency,andcollaboration.Integrateethics
intotheAIoperatingmodeltosupportsupplychainpracticesthatarefair,transparent,andsociallyresponsible,andbuildbrandreputationandtrustwithcustomersandstakeholders.
EmpowersupplychainoperationswithagenticAI.
–EstablishKPIsforyourAIagentsandassignyourpeople
tomonitortheirperformance.Empoweryourpeopletoset
workflowoptimizationgoalsforAIagents,basedonbusiness
impact.Also,putyourpeopleinchargeofcontinuously
evaluatinghowwellAIagentsaremeetingpreassignedbusinessgoals.LeverageobjectivelysuccessfulagenticAIapplicationsasablueprintforfurtherinnovationinsupplychainactivities.
–Deployagentsthroughoutyourecosystemtoamplifyimpact
andreducecost.ImplementAIagentoperatingtasksacross
thespectrumofsupplychainworkflows—especiallythose
representedbyyourglobalpartners.MaphowyourAIagents
willworktogethertooptimizeexistingworkflows,createnew
workflows,andextendpartnercommunications—allinrealtime.EngagewithecosystempartnerstomutuallyassessandsupporteachotherinpursuitofagenticAIcapabilitiesthatgobeyond
thewallsofyourownenterprise.
–Taskagentstotransformdatafromroadblocktoaccelerator.
UseAIagentstoexplore,create,andtesthypotheticalwhat-
ifscenariosderivedfromextensiveproprietarydataand
organizationalexperience.Empoweragentstoautonomously
orchestrateactionsrequiredtoprepareforthemostimpactfulandlikelyscenarios.Developmechanismstomeasurethevalueofagentic-leddisruptionavoidancetosetabenchmarkfor
continuousagentimprovement.
ScalingsupplychainresiliencewithAI17
Authors
GeraldJackson
VicePresident,SCSolutionsStrategyandInnovation,Oracle
/in/gerald-jackson-8377831/
gerald.jackson@
Gerald’scareerfocusistohelpclientsunlockthefullpotentialofsupplychains
throughadvancedtechnology,data,humanenablement,andseamlessintegrationacrossfunctionalprocesses.HesharestheOraclevisiontoharnessthepowerof
moderntechnologyandrethinkcustomersupplychainstobesmarter,moresustainable,productive,andresilient.
ChiPark
SeniorSolutionsDirector,SupplyChangeManagement,Accelalpha
/in/chi-park/
chi.park@
Chiisasupplychainindustryveteranwith18yearsextensiveknowledgeofOracle
ERPandSupplyChainManagementapplicationsrangingfromsalesandoperations
planning,constraint-basedsupplychainanddistributionrequirementsplanning,
finiteproductionscheduling,discreteandprocessmanufacturing,ordermanagement,inventorymanagement,productlifecyclemanagement,andprocurement.Hispurposeisadvisingclientsinelevatingextendedsupplychainstothenextmaturitylevels,
includingAIautomations.
PushpinderSingh
Partner,GlobalSupplyChainTransformationLeader,IBMConsulting
/in/pushpindersingh/
p
ushpinder.singh@
Pushpinderpartnerswithleadingorganizationsworldwidetoacceleratetheirsupplychainperformance.Asastrategicadvisor,hebringsover24yearsofexperience,
drivingimpactfulchangeandlong-termvaluecreationforthenextgenerationof
supplychainleaders.Heispassionateaboutleveragingtechnologytosolvecomplexsupplychainchallenges.
KarenButner
GlobalResearchLeader,SupplyChainAIAutomation,IBMInstituteforBusinessValue
/in/karenvbutner/
kbutner@
Karenisresponsibleformarketinsights,trends,andleading
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤礦停車場衛(wèi)生管理制度
- 衛(wèi)生院隊伍建設管理制度
- 售樓處周邊衛(wèi)生管理制度
- 衛(wèi)生室消防安全工作制度
- 幼兒園廁所衛(wèi)生工作制度
- 手衛(wèi)生相關管理制度
- 面包房前廳衛(wèi)生制度
- 學校醫(yī)務室衛(wèi)生制度
- 社區(qū)衛(wèi)生服務站內(nèi)控制度
- 美膚店衛(wèi)生服務制度
- GB/T 7031-2025機械振動道路路面譜測量數(shù)據(jù)的報告
- 海上風電回顧與展望2025年
- 地鐵春節(jié)安全生產(chǎn)培訓
- 預包裝食品配送服務投標方案(技術方案)
- 新型電力系統(tǒng)背景下新能源發(fā)電企業(yè)技術監(jiān)督管理體系創(chuàng)新
- 旅游景區(qū)旅游安全風險評估報告
- FZ∕T 54007-2019 錦綸6彈力絲行業(yè)標準
- 顱腦外傷的麻醉管理
- AED(自動體外除顫儀)的使用
- 2024年福建寧德高速交警招聘筆試參考題庫附帶答案詳解
- 中國礦業(yè)權評估準則(2011年)
評論
0/150
提交評論