2024山東省萊州市中考數(shù)學能力檢測試卷附參考答案詳解(綜合題)_第1頁
2024山東省萊州市中考數(shù)學能力檢測試卷附參考答案詳解(綜合題)_第2頁
2024山東省萊州市中考數(shù)學能力檢測試卷附參考答案詳解(綜合題)_第3頁
2024山東省萊州市中考數(shù)學能力檢測試卷附參考答案詳解(綜合題)_第4頁
2024山東省萊州市中考數(shù)學能力檢測試卷附參考答案詳解(綜合題)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省萊州市中考數(shù)學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如果,那么的結(jié)果是(

)A. B. C. D.2、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.3、已知關于x的一元二次方程標有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C.且 D.4、關于的方程有兩個不相等的實根、,若,則的最大值是(

)A.1 B. C. D.25、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°二、多選題(5小題,每小題3分,共計15分)1、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉(zhuǎn)a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn),下列結(jié)論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF2、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.3、下表中列出的是一個二次函數(shù)的自變量與函數(shù)的幾組對應值:…013……6…下列各選項中,正確的是(

)A.函數(shù)圖象的開口向下 B.當時,的值隨的增大而增大C.函數(shù)的圖象與軸無交點 D.這個函數(shù)的最小值小于4、等腰三角形三邊長分別為a,b,3,且a,b是關于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.185、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數(shù))第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)2、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結(jié)果保留).3、若拋物線的圖像與軸有交點,那么的取值范圍是________.4、如圖,在正方形網(wǎng)格中,格點繞某點順時針旋轉(zhuǎn)角得到格點,點與點,點與點,點與點是對應點,則_____度.5、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.四、解答題(6小題,每小題10分,共計60分)1、在“鄉(xiāng)村振興”行動中,某村辦企業(yè)以,兩種農(nóng)作物為原料開發(fā)了一種有機產(chǎn)品,原料的單價是原料單價的1.5倍,若用900元收購原料會比用900元收購原料少.生產(chǎn)該產(chǎn)品每盒需要原料和原料,每盒還需其他成本9元.市場調(diào)查發(fā)現(xiàn):該產(chǎn)品每盒的售價是60元時,每天可以銷售500盒;每漲價1元,每天少銷售10盒.(1)求每盒產(chǎn)品的成本(成本=原料費+其他成本);(2)設每盒產(chǎn)品的售價是元(是整數(shù)),每天的利潤是元,求關于的函數(shù)解析式(不需要寫出自變量的取值范圍);(3)若每盒產(chǎn)品的售價不超過元(是大于60的常數(shù),且是整數(shù)),直接寫出每天的最大利潤.2、在中,,,將繞點C順時針旋轉(zhuǎn)一定的角度得到,點A、B的對應點分別是D、E.(1)當點E恰好在AC上時,如圖1,求的大??;(2)若時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形(請用兩組對邊分別相等的四邊形是平行四邊形)3、如圖,⊙O的半徑弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.4、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.5、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?6、某水果店標價為10元/kg的某種水果經(jīng)過兩次降價后價格為8.1元/kg,并且兩次降價的百分率相同.時間/天x銷量/kg120-x儲藏和損耗費用/元3x2-64x+400(1)求該水果每次降價的百分率;(2)從第二次降價的第1天算起,第x天(x為整數(shù))的銷量及儲藏和損耗費用的相關信息如下表所示,已知該水果的進價為4.1元/kg,設銷售該水果第x天(1≤x<10)的利潤為377元,求x的值.-參考答案-一、單選題1、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設a,b的值,從而求出答案.2、C【解析】【分析】根據(jù)切線的性質(zhì),連接過切點的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關鍵是理解和掌握切線的性質(zhì).3、C【解析】【分析】由一元二次方程定義得出二次項系數(shù)k≠0;由方程有兩個不相等的實數(shù)根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內(nèi)容,解決本題的關鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內(nèi)容,能正確求出不等式(組)的解集等,本題對學生的計算能力有一定的要求.4、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關系,求得兩根之和和兩根之積,再根據(jù)兩根關系,求得系數(shù)的關系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關系得到系數(shù)的關系是解題的關鍵.5、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).二、多選題1、ABD【解析】【分析】根據(jù)等腰三角形的性質(zhì)由BA=BC得∠A=∠C,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內(nèi)角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉(zhuǎn)角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉(zhuǎn)α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉(zhuǎn)角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形內(nèi)角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結(jié)論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關系,熟練運用對稱軸的范圍求2a與b的關系,二次函數(shù)與方程及不等式之間的關系是解決本題的關鍵.3、BD【解析】【分析】根據(jù)拋物線經(jīng)過點(0,-4),(3,-4)可得拋物線對稱軸為直線,由拋物線經(jīng)過點(-2,6)可得拋物線開口向上,進而求解.【詳解】解:∵拋物線經(jīng)過點(0,-4),(3,-4),∴拋物線對稱軸為直線,∵拋物線經(jīng)過點(-2,6),∴當x<時,y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點,故A,C錯誤,不符合題意;∴x>時,y隨x增大而增大,故B正確,符合題意;由對稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點】本題考查二次函數(shù)的圖象與性質(zhì),解題關鍵是掌握二次函數(shù)與方程的關系.4、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關系確定此種情況存在,再利用根與系數(shù)的關系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數(shù)的關系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數(shù)的關系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關鍵.5、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應的函數(shù)值相等,∵時,對應函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關鍵.三、填空題1、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關鍵.2、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關鍵.3、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.4、【解析】【分析】先連接,,作,的垂直平分線交于點,連接,,再由題意得到旋轉(zhuǎn)中心,由旋轉(zhuǎn)的性質(zhì)即可得到答案.【詳解】如圖,連接,,作,的垂直平分線交于點,連接,,∵,的垂直平分線交于點,∴點是旋轉(zhuǎn)中心,∵,∴旋轉(zhuǎn)角.故答案為.【考點】本題考查旋轉(zhuǎn),解題的關鍵是掌握旋轉(zhuǎn)的性質(zhì).5、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關鍵.四、解答題1、(1)每盒產(chǎn)品的成本為30元.(2);(3)當時,每天的最大利潤為16000元;當時,每天的最大利潤為元.【解析】【分析】(1)設原料單價為元,則原料單價為元.然后再根據(jù)“用900元收購原料會比用900元收購原料少”列分式方程求解即可;(2)直接根據(jù)“總利潤=單件利潤×銷售數(shù)量”列出解析式即可;(3)先確定的對稱軸和開口方向,然后再根據(jù)二次函數(shù)的性質(zhì)求最值即可.【詳解】解:(1)設原料單價為元,則原料單價為元.依題意,得.解得,,.經(jīng)檢驗,是原方程的根.∴每盒產(chǎn)品的成本為:(元).答:每盒產(chǎn)品的成本為30元.(2);(3)∵拋物線的對稱軸為=70,開口向下∴當時,a=70時有最大利潤,此時w=16000,即每天的最大利潤為16000元;當時,每天的最大利潤為元.【考點】本題主要考查了分式方程的應用、二次函數(shù)的應用等知識點,正確理解題意、列出分式方程和函數(shù)解析式成為解答本題的關鍵.2、(1)(2)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根據(jù)等邊對等角即可求出∠CAD=∠CDA=75°,再根據(jù)直角三角形的兩個銳角互余即可得出結(jié)論;(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=AC,然后根據(jù)30°所對的直角邊是斜邊的一半即可求出AB=AC,從而得出BF=AB,然后證出△ACD和△BCE為等邊三角形,再利用HL證出△CFD≌△ABC,證出DF=BE,即可證出結(jié)論.(1)解:∵△ABC繞點C順時針旋轉(zhuǎn)α得到△DEC,點E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣∠CAD=15°.(2)證明:如圖2,連接AD,∵點F是邊AC中點,∴BF=AF=CF=AC,∵∠ACB=30°,∴AB=AC,∴BF=CF=AB,∵△ABC繞點C順時針旋轉(zhuǎn)60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC,∴DE=BF,△ACD和△BCE為等邊三角形,∴BE=CB,∵點F為△ACD的邊AC的中點,∴DF⊥AC,在Rt△CFD和Rt△ABC中,∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四邊形BEDF是平行四邊形.【考點】本題主要考查的是旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定,掌握旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定是解決此題的關鍵.3、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關鍵.4、(1);(2)①1;②點C的坐標是【解析】【分析】(1)將兩點分別代入,得,解方程組即可;(2)①根據(jù)AB=4,斜邊上的高為2,Q的橫坐標為1,計算點C的橫坐標為-1,即到y(tǒng)軸的距離為1;②根據(jù)直線PQ的解析式,設點A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代數(shù)式表示點C的坐標,代入拋物線解析式求解即可.【詳解】解:(1)將兩點分別代入,得解得.所以拋物線的解析式是.(2)①如圖2,拋物線的對稱軸是y軸,當點A與點重合時,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴點C到拋物線的對稱軸的距離等于1.②如圖3,設直線PQ的解析式為y=kx+b,由,得解得∴直線的解析式為,設,∴,所以.所以.將點代入,得.整理,得.因式分解,得.解得,或(與點P重合,舍去).當時,.所以點C的坐標是.【點評】本題考查了拋物線解析式的確定,一次函數(shù)解析式的確定,等腰直角三角形的性質(zhì),一元二次方程的解法,熟練掌握待定系數(shù)法,靈活用解析式表示點的坐標,熟練解一元二次方程是解題的關鍵.5、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論