強化訓練-烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克練習題(含答案詳解)_第1頁
強化訓練-烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克練習題(含答案詳解)_第2頁
強化訓練-烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克練習題(含答案詳解)_第3頁
強化訓練-烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克練習題(含答案詳解)_第4頁
強化訓練-烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克練習題(含答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

烏魯木齊第四中學7年級數(shù)學下冊第四章三角形定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,52、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,73、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE4、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計算6、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,107、根據(jù)下列已知條件,能畫出唯一的的是()A., B.,,C.,, D.,,8、有一個三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.59、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個數(shù)是()A.1個 B.2個 C.3個 D.4個10、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.2、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.3、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結論有_____.(填序號)4、某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;③從D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.5、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點O,分別過A、B兩點作AC⊥l于點C,BD⊥l于點D,若AC=5,BD=3,則CD=_______.6、如圖,在△ABC中,點D為BC邊延長線上一點,若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.7、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點,連結BE、CD交于點F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.8、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設點的運動速度為,若使得與全等,則的值為______.9、已知a,b,c是的三條邊長,化簡的結果為_______.10、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).三、解答題(6小題,每小題10分,共計60分)1、如圖,點B、F、C、E在同一條直線上,AB=DE,AC=DF,BF=EC.求證:∠A=∠D.2、如圖,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求證:AF=DE.3、如圖△ABC中,已知∠A=60°,角平分線BD、CE交于點O.(1)求∠BOC的度數(shù);(2)判斷線段BE、CD、BC長度之間有怎樣的數(shù)量關系,請說明理由.4、已知:如圖,,,求證:5、如圖,已知AB=AC,BD=CE,證明△ABE≌△ACD.6、如圖,E為AB上一點,BD∥AC,AB=BD,AC=BE.求證:BC=DE.-參考答案-一、單選題1、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構成三角形;∵3+2=5,∴B不能構成三角形;∵3+4<8,∴C不能構成三角形;∵∵3+4>5,∴D能構成三角形;故選D.【點睛】本題考查了三角形的三邊關系定理,熟練掌握性質定理是解題的關鍵.2、C【分析】根據(jù)三角形的三邊關系,逐項判斷即可求解.【詳解】解:A、因為,所以不能組成三角形,故本選項不符合題意;B、因為,所以不能組成三角形,故本選項不符合題意;C、因為,所以能組成三角形,故本選項符合題意;D、因為,所以不能組成三角形,故本選項不符合題意;故選:C【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.3、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進而逐一進行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項錯誤;D選項正確.故選:D.【點睛】本題考查了全等三角形的判定與性質,解決本題的關鍵是掌握全等三角形的判定與性質.4、D【分析】根據(jù)三角形三邊關系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構成三角形的條件,熟練掌握三角形三邊關系是解題的關鍵.5、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點睛】本題考查的是小學涉及的正方形的性質,直角三角形全等的判定與性質,證明是解本題的關鍵.6、C【分析】三角形的三邊應滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關系,滿足兩條較小邊的和大于最大邊即可.7、C【分析】利用全等三角形的判定方法以及三角形三邊關系分別判斷得出即可.【詳解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能畫出唯一三角形,故本選項不符合題意;B.,,,不符合全等三角形的判定定理,不能畫出唯一的三角形,故本選項不符合題意;C.,,,符合全等三角形的判定定理ASA,能畫出唯一的三角形,故本選項符合題意;D.3+4<8,不符合三角形的三邊關系定理,不能畫出三角形,故本選項不符合題意;故選:C.【點睛】此題主要考查了全等三角形的判定以及三角形三邊關系,正確把握全等三角形的判定方法是解題關鍵.8、D【分析】根據(jù)三角形三邊關系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設第三邊為x,則5?2<x<5+2,即3<x<7,所以選項D符合題意.故選:D.【點睛】本題考查三角形三邊關系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎題,中考常考題型.9、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個.故選:C.【點睛】本題考查了三角形的三邊關系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關系.10、B【分析】利用全等三角形的判定方法對各選項進行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當∠BAD=∠ABC時,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;B、當∠BAC=∠ABD時,根據(jù)“SAS”可判斷△ABC≌△BAD,該選項符合題意;C、當∠DAC=∠CBD時,由三角形內角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;故選:B.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.二、填空題1、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質和判定,三角形的面積的應用,注意:等底等高的三角形的面積相等.2、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質,根據(jù)題意得出關于的方程是解題的關鍵.3、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質,BC∥DE,再根據(jù)平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質、全等三角形的判定與性質、平行線的判定與性質等知識點的運用.要求學生具備運用這些定理進行推理的能力.4、5【分析】將題目中的實際問題轉化為數(shù)學問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應用,熟練應用全等三角形的判定定理和性質是解題關鍵.5、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對應邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關系即可求出CD的長度.【詳解】解:∵AC⊥l于點C,BD⊥l于點D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點睛】此題考查了全等三角形的性質和判定,同角的余角相等,解題的關鍵是根據(jù)題意證明△ACO≌△ODB.6、30°【分析】根據(jù)三角形的外角的性質,即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點睛】本題主要考查了三角形的外角性質,熟練掌握三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.7、96°96度【分析】根據(jù)題意由翻折的性質和全等三角形的對應角相等、三角形外角定理以及三角形內角和定理進行分析解答.【詳解】解:設∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點睛】本題考查全等三角形的性質,解答本題的關鍵是利用“全等三角形的對應角相等”和“兩直線平行,內錯角相等”進行推理.8、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據(jù)全等三角形的性質分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質,路程、速度、時間之間的關系等知識,解題的關鍵是理解題意,靈活運用所學知識進行分類解決問題.9、2b【分析】由題意根據(jù)三角形三邊關系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關鍵.10、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關鍵.三、解答題1、見解析【分析】先證明BC=EF,讓利用SSS證明△ABC≌△DEF即可得到∠A=∠D.【詳解】證明:∵BF=EC,∴BF+FC=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【點睛】本題主要考查了全等三角形的性質與判定,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.2、見解析【分析】由題意可得∠B=∠C=90°,BF=CE,由“AAS”可證△ABF≌△DCE,可得AF=DE.【詳解】證明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF,∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS),∴AF=DE,【點睛】本題考查了全等三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論