江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題含解析_第1頁
江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題含解析_第2頁
江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題含解析_第3頁
江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題含解析_第4頁
江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州大附屬中學2026屆中考四模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.化簡:-,結果正確的是()A.1 B. C. D.2.一次函數(shù)y=kx+k(k≠0)和反比例函數(shù)在同一直角坐標系中的圖象大致是()A. B. C. D.3.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.4.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是(

)A.1 B.2 C.3 D.45.將(x+3)2﹣(x﹣1)2分解因式的結果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)6.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°7.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.8.如圖是某個幾何體的三視圖,該幾何體是()A.圓錐 B.四棱錐 C.圓柱 D.四棱柱9.函數(shù)的圖像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是()A.36° B.54° C.72° D.108°二、填空題(本大題共6個小題,每小題3分,共18分)11.為參加2018年“宜賓市初中畢業(yè)生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是_____.12.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.13.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.14.鼓勵科技創(chuàng)新、技術發(fā)明,北京市2012-2017年專利授權量如圖所示.根據(jù)統(tǒng)計圖中提供信息,預估2018年北京市專利授權量約______件,你的預估理由是______.15.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數(shù)量關系是________.16.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn),,DE=6,則EF=.三、解答題(共8題,共72分)17.(8分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,求n的取值范圍.18.(8分)某化工材料經銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經市場調查發(fā)現(xiàn),日銷量y(千克)是銷售單價x(元)的一次函數(shù),且當x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式;當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?19.(8分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)y=的圖象上.(1)求反比例函數(shù)y=的表達式;(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.20.(8分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.21.(8分)服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?22.(10分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為w元.求w與x之間的函數(shù)關系式.該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?23.(12分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據(jù)學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調查學生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數(shù);(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?24.小馬虎做一道數(shù)學題,“已知兩個多項式,,試求.”其中多項式的二次項系數(shù)印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數(shù)“”;在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關鍵就是熟練掌握運算規(guī)則.2、C【解析】A、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象過二、四象限可知k<0,兩結論相矛盾,故選項錯誤;B、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象與y軸交點在y軸的正半軸可知k>0,兩結論相矛盾,故選項錯誤;C、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象過二、三、四象限可知k<0,兩結論一致,故選項正確;D、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象與y軸交點在y軸的負半軸可知k<0,兩結論相矛盾,故選項錯誤,故選C.3、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關.4、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,三角函數(shù)的定義,熟練掌握全等三角形的判定和性質是解題的關鍵.5、C【解析】

直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點睛】此題主要考查了公式法分解因式,正確應用平方差公式是解題關鍵.6、B【解析】分析:由等腰直角三角形的性質和平行線的性質求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質、等腰直角三角形的性質;熟練掌握等腰直角三角形的性質,由平行線的性質求出∠ACD的度數(shù)是解決問題的關鍵.7、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.8、B【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀【詳解】解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是長方形可判斷出這個幾何體應該是四棱柱.故選B.【點睛】本題考查了由三視圖找到幾何體圖形,屬于簡單題,熟悉三視圖概念是解題關鍵.9、D【解析】

根據(jù)反比例函數(shù)中,當,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大,進而得出答案.【詳解】解:函數(shù)的圖象位于第四象限.故選:D.【點睛】此題主要考查了反比例函數(shù)的性質,正確記憶反比例函數(shù)圖象分布的象限是解題關鍵.10、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是=72度,故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數(shù)為2.40,眾數(shù)為2.1.故答案為2.40,2.1.點睛:本題考查了中位數(shù)和眾數(shù)的求法,如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是這組數(shù)據(jù)的眾數(shù).12、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.13、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.14、113407,北京市近兩年的專利授權量平均每年增加6458.5件.【解析】

依據(jù)北京市近兩年的專利授權量的增長速度,即可預估2018年北京市專利授權量.【詳解】解:∵北京市近兩年的專利授權量平均每年增加:(件),∴預估2018年北京市專利授權量約為106948+6458.5≈113407(件),故答案為:113407,北京市近兩年的專利授權量平均每年增加6458.5件.【點睛】此題考查統(tǒng)計圖的意義,解題的關鍵在于看懂圖中數(shù)據(jù).15、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標系.16、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.三、解答題(共8題,共72分)17、(1)正方形ABCD的“關聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關聯(lián)點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關聯(lián)點”,所以E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關聯(lián)點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關聯(lián)點”為P2,P3;(2)作正方形ABCD的內切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關聯(lián)點”,∴E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質、直線與圓的位置關系等知識,解題的關鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.18、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)當銷售單價為70元時,該公司日獲利最大,為2050元.【解析】

(1)根據(jù)y與x成一次函數(shù)解析式,設為y=kx+b(k≠0),把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據(jù)利潤=單價×銷售量,列出w關于x的二次函數(shù)解析式即可;(3)利用二次函數(shù)的性質求出w的最大值,以及此時x的值即可.【詳解】(1)設y=kx+b(k≠0),根據(jù)題意得,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70時,w有最大值為w=﹣2×25+21=2050元,∴當銷售單價為70元時,該公司日獲利最大,為2050元.【點睛】此題考查了二次函數(shù)的應用,待定系數(shù)法求一次函數(shù)解析式,以及二次函數(shù)的性質,熟練掌握二次函數(shù)性質是解本題的關鍵.19、(1)y=;(1)(﹣1,0)或(1,0)【解析】

(1)把A的坐標代入反比例函數(shù)的表達式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據(jù)已知S△AOPS△AOB,求出OP長,即可求出答案.【詳解】(1)把A(,1)代入反比例函數(shù)y得:k=1,所以反比例函數(shù)的表達式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點P的坐標為(﹣1,0)或(1,0).【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,三角形的面積,解直角三角形等知識點,求出反比例函數(shù)的解析式和求出△AOB的面積是解答此題的關鍵.20、(1)作圖見解析;(2)證明見解析;【解析】

(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點,過兩點作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結論.【詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點:1.作圖—基本作圖;2.線段垂直平分線的性質;3.矩形的性質.21、(1)甲種服裝最多購進75件,(2)見解析.【解析】

(1)設甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據(jù)購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】(1)設購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設總利潤為W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①當0<a<10時,10-a>0,W隨x增大而增大,∴當x=75時,W有最大值,即此時購進甲種服裝75件,乙種服裝25件;②當a=10時,所以按哪種方案進貨都可以;③當10<a<20時,10-a<0,W隨x增大而減小.當x=65時,W有最大值,即此時購進甲種服裝65件,乙種服裝35件.【點睛】本題考查了一元一次方程的應用,不等式的應用,以及一次函數(shù)的性質,正確利用x表示出利潤是關鍵.22、(1);(2)該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.【解析】

(1)根據(jù)銷售額=銷售量×銷售價單x,列出函數(shù)關系式.(2)用配方法將(2)的函數(shù)關系式變形,利用二次函數(shù)的性質求最大值.(3)把y=150代入(2)的函數(shù)關系式中,解一元二次方程求x,根據(jù)x的取值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論