版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
C.R.WylieJr:
101PUZZLESINTHOUGHT&LOGIC
C.R.WYLIEJr.
DepartmentofMathematics,UniversityofUtah
PUZZLES
THOUGHTLOGIC
IN
AND
DoverPublicationsInc.,NewYork
Copyright@1957byDoverPublications,Inc.
AllrightsreservedunderPanAmericanandIn-ternationalCopyrightConventions.
PublishedinCanadabyGeneralPublishingCom-pany,Ltd.,30LesmillRoad,DonMills,Toronto,Ontario.
PublishedintheUnitedKingdombyConstableandCompany,Ltd.,10OrangeStreetLondonWC2.
101PuzzlesinThoughtandLogicisanoriginalwork,irstpublishedbyDoverPublications,Inc.,in1957.
StandardBookNumber:486-20367-0
LibraryofCongressCatalogCardNumber:57-13026
ManufacturedintheUnitedStatesofAmerica
DoverPublications,Inc.
180VarickStreet
NewYork,N.Y.10014
INTRODUCTION
Althoughlifeisthegreatestpuzzleofall,thesepuzzlesarenottakenfromlife,andanyresem-blancetheymaybeartoactualpersonsorplacesisentirelycoincidental.
INTRODUCTION
Puzzlesofapurelylogicalnaturearedistinguishedfromriddles,ontheonehand,bythefactthattheyinvolvenoplayonwords,nodeliberatelydeceptivestatements,noguessing一inshort,no“catches”ofanykind.Theydifferfromquizzesandmostmathematicalpuzzles,ontheotherhand,inthatthoughtratherthanmemory,thatis,nativementalingenuityratherthanastoreofacquiredinformation,isthekeytotheirsolution.
Inorderthatthepuzzlesinthiscollectionshouldconformasnearlyaspossibletothisideal,everyefforthasbeenmadetokeepthefactualbasisofeachasmeageraspossible.Inaveryfewinstancestheuseofalittleelementaryalgebramaysimplifythesolution,butnoneactuallyrequiresanytechnicalinformationbeyondthemultiplicationtablesandthefactthat
distance=speed×time
Itisexpected,however,thatthereaderwillrecognizethatamanmustbeolderthanhischildren,thatwhentwopeoplewinamixeddoublesmatchoneismaleandtheotherisfe-male,andafewotherequallysimplefactsfromeverydayexperience.
Itisinterestingtoobservethatpuzzlesofthepurelylogicaltypeepitomizetheentirescientificprocess.Attheoutsetoneisconfrontedwithamassofmoreorlessunrelateddata.Fromthesefactsafewpositiveinferencescanperhapsbedrawnimmediately,butusuallyitisnecessarytosetuptentativeorworkinghypothesestoguidethesearchforasolution.Thevalidityofthesehypothesesmustthenbecare-fullycheckedbytestingtheirconsequencesforconsistency
Introduction
withtheoriginaldata.Ifinconsistenciesappear,thetenta-tiveassumptionsmustberejectedandotherssubstituteduntilfinallyaconsistentsetofconclusionsemerges.Thesecon-clusionsmustthenbetestedforuniquenesstodeterminewhethertheyalonemeettheconditionsoftheproblemorwhetherthereareothersequallyacceptable.
Thusbyrepetitionsofthefundamentalprocessofsettingupanhypothesis,drawingconclusionsfromit,andexaminingtheirconsistencywithinthetotalframeworkoftheproblem,theanswerisultimatelywrestedfromtheseeminglyinco-herentinformationinitiallyprovided.Andsoitisinscience,too.
Itisinherentinthenatureoflogicalpuzzlesthattheirsolutioncannotbereducedtoafixedpattern.Neverthelessitmaybehelpfulatthispointtooffersomegeneralsuggestionsonhowtoattackpuzzlesofthissort.Considerfirstthefol-lowingexample:
Boronoff,Pavlow,Revitsky,andSukarekarefourtalentedcreativeartists,oneadancer,oneapainter,oneasinger,andoneawriter(thoughnotnecessarilyrespectively).
(1)BoronoffandRevitskywereintheaudiencethenightthesingermadehisdebutontheconcertstage.
(2)BothPavlowandthewriterhavesatforportraitsbythepainter.
(3)Thewriter,whosebiographyofSukarekwasabest-seller,isplanningtowriteabiographyofBoronoff.
(4)BoronoffhasneverheardofRevitsky.
Whatiseachman'sartisticfield?
Tokeeptrackmentallyofthismanyfactsandthehypothe-sesandconclusionsbaseduponthemisconfusinganddiffi-cult.Inallbutthesimplestpuzzlesitisfarbettertoreducetheanalysissystematicallytoaseriesofwrittenmemoranda.
Introduction
Onemethodofaccomplishingthisistosetupanarrayinwhichallpossibilitiesareencompassed,thus:
BoronoffPavlow
RevitskySukarek
dancerpaintersingerwriter
Nowifweconsider,forexample,thatPavlowcannotbethedancerwewillplaceanX,say,oppositehisnameinthecolumnheadeddancer.OrifwedecidethatBoronoffmustbethepainterwewillplaceadifferentmark,sayanO,oppositehisnameinthiscolumn,whereuponwecanfilltheremainingsquaresinthisrowandcolumnwithX's(sincethereisonlyoneBoronoffandonlyonepainter).ClearlythesolutionwillbecompletewhenwesucceedinplacingconsistentlyexactlyoneOineachrowandineachcolumn,therebyshowingjustwhateachmanis.
Inthepresentproblemweknowfrom(1)thatneitherBoronoffnorRevitskyisthesinger,henceweplaceX'soppo-sitetheirnamesintheappropriatecolumn.From(2)weknowthatPavlowisneitherthepainternorthewriter,andfrom(3)weseethatthewriterisneitherBoronoffnorSukarek.WiththecorrespondingX'sdulyentered,thearraylookslikethis:
BoronoffPavlow
RevitskySukarek
dancerpaintersingerwriter
X
X
X
X
X
X
Introduction
ByeliminationitisnowclearthatRevitskyisthewriter.
HenceweenteranOoppositehisnameinthecolumnheadedwriterandfilltheremainingsquaresinhisrowwithX's.Moreover,accordingto(2),Revitskyhassatforthepainter,whileaccordingto(4)BoronoffdoesnotknowRevitsky.HenceBoronoffisnotthepainter,andsobyeliminationhemustbethedancer.ButthenneitherPavlownorSukarekcanbethedancer,andthisobservationleavessingerastheonlycategorypossibleforPavlow.Finally,Sukarekmustbethepainter,andthesolutioniscomplete.
Theprocedurewehavejustillustratedisalsoconvenientinidentification-puzzleswherethenecessaryinformationisgivenintheformofconditionalorcontingentstatements.Hereisasimpleexample:
(1)IfAisP,CisnotR.
(2)IfBisPorR,AisQ.
(3)IfAisQorR,BisP.
Determinethecorrespondencebetweenthesymbols(A,B,C)andthesymbols(P,Q,R).
Supposewebeginbyacceptingthehypothesis“AisP”.WethenconstructanarrayinwhichanOappearsoppositeAinthecolumnheadedPandX'sappearintheothersquaresintheA-rowandtheP-column:
AB
C
PQR
0
X
X
X
X
Nowfrom(1),CcannotbeR.HenceitmustbeQ,andneces-sarilythenBmustbeR.Butfrom(2),ifBisR,AmustbeQ,whichcontradictsboththeassumptionthatAisPandtheconclusionthatCisQ.ThisinconsistencyforcesustoabandonthehypothesisthatAisP.
Introduction
WecontinuenowbyconstructinganewarraybaseduponthefactthatAisnotP.Accordingto(3),ifAisnotPthenBmustbeP.HenceanOcanbeenteredoppositeBintheP-column,andtheremainingsquaresinthisrowandcolumncanbefilledwithX's:
AB
C
PQR
X
0
X
X
X
Thenfrom(2)weconcludethatAisQ,whereuponitfollows
thatCisR,andthesolutioniscomplete.
Insomepuzzlesthegiveninformationconsistsofasetofstatements,acertainnumberofwhichareknowntobefalsewithouttheuntrueassertionsbeingidentified.Puzzlesofthissortcanalsobeconvenientlyhandledthroughtheuseofarrays.Asanillustrationconsiderthefollowingexample:
ShortyFinelliwasfoundshottodeathonemorning,andthepolicewithbetterthanaverageluckhadthreered-hotsuspectsbehindbarsbynightfall.Thateven-ingthemenwerequestionedandmadethefollowingstatements.
Buck:(1)Ididn'tdoit.
(2)IneversawJoeybefore.
(3)Sure,IknewShorty.
Joey:(1)Ididn'tdoit
(2)BuckandTippyarebothpalsofmine.
(3)Buckneverkilledanybody.
Tippy:(1)Ididn'tdoit.
(2)Buckliedwhenhesaidhe'dneverseenJoeybefore.
(3)Idon'tknowwhodidit.
Ifoneandonlyoneofeachman'sstatementsisfalse,andifoneofthethreemenisactuallyguilty,whoisthemurderer?
Introduction
Heretheappropriatearrayisthefollowing
BuckJoeyTippy
123
andourproblemistoenteroneF(forfalse)andtwoT's(fortrue)ineachrowinamannerconsistentwiththegivenstatements.
AttheoutsetwecandrawthepositiveinferencethatTippyisinnocent.Forifhecommittedthecrime,thenhisfirstandthirdstatementsarebothfalse,contrarytothegivencondi-tionthatonlyoneofeachman'sassertionsisuntrue.ThisconclusioncannowberecordedasaToppositeTippyinthefirstcolumn.
Wearenowleftwithtwoalternatives:either(a)Buckistheguiltyone,or(b)Joeyistheguiltyone.Ifweassume(a),thenBuck'sfirststatementisfalseandJoey'slaststate-mentisfalse.UndertheconditionsoftheproblemthismeansthatBuck'ssecondandJoey'ssecondstatementmustbothbetrue.Butthisimpossiblesincetheyareclearlycontradictory.HencewemustabandontheassumptionthatBuckisthemurderer.ItfollowsthereforethatJoeyistheonewhokilledShorty,andthiscanbecheckedbyexaminingthecompletedarrayforthealternative(b):
BuckJoeyTippy
123
T
F
T
F
T
T
T
T
F
Introduction
Puzzlesconstructedbythecodingorsuppressionofdigitsinanarithmeticalcalculationrequirenomorethanattentiontoobviousnumericalfacts.Hereasinpuzzlesofthefore-going,moreverbaltypesitisalsohelpfultokeeptrackofcluesandconclusionsinanorderly,tabularway.Toillustrate,letusconsiderthefollowingexample:
Inacertainmultiplicationproblemeachdigitfrom
0to9wasreplacedbyadifferentletter,yieldingthecodedcalculation
Forwhatnumberdoeseachletterstand?
Tosystematizeourworkwefirstwriteinarowthediffer-entlettersappearingintheproblem:
ALERUMWINP
Overeachletterwewillwriteitsnumericalequivalentwhenwediscoverit.Inthecolumnsunderthevariousletterswewillrecordcluesandtentativehypotheses,beingcarefultoputallrelatedinferencesonthesamehorizontalline.
Inproblemsofthissortthedigits0and1canoftenbefound,oratleastrestrictedtoaveryfewpossibilities,bysimpleinspection.Forinstance,0canneveroccurastheleft-mostdigitofaninteger,andwhenanynumberismultipliedbyzerotheresultconsistsexclusivelyofzeros.Moreoverwhenanynumberismultipliedby1theresultisthatnumberitself.Inthepresentproblem,however,wecanidentify0by
Introduction
anevensimplerobservation.Forinthesecondcolumnfromtheright,NplusLequalsN,withnothingcarriedoverfromthecolumnontheright.HenceLmustbezero.
Inoursearchfor1wecaneliminateR,U,andMatonce,sincenoneofthese,asmultipliersinthesecondrow,repro-ducesALE.MoreoverEcannotbe1sinceUtimesEdoesnotyieldaproductendinginU.Atpresent,however,wehavenofurthercluesastowhether1isA,I,N,P,orW.
NowthepartialproductWUWLendsinL,whichweknowtobe0.HenceoneofthetwolettersUandEmustbe5.Lookingattheunitsdigitsoftheotherpartialproducts,weseethatbothM×EandR×EarenumbersendinginE.Amoment'sreflection(oraglanceatamultiplicationtable)showsthatEmustthereforebe5.
ButifEis5,thenbothRandMmustbeodd,sinceanevennumbersmultipliedby5wouldyieldaproductendingin0,whichisnotthecaseineitherthefirstorthirdpartialproduct.Moreover,bysimilarreasoningitisclearthatUisanevennumber.
AtthispointitisconvenienttoreturntoourarrayandlistunderUthevariouspossibilities,namely2,4,6,and8.OppositeeachofthesewerecordthecorrespondingvalueofWasreadfromthepartialproductWUWL,whoselasttwodigitsarenowdeterminedsincethefactorALEisknowntobe—05.ThesevaluesofWareeasilyseentobe1,2,3,and4.
FromaninspectionofthesecondcolumnfromtheleftwecannowdeducethecorrespondingpossibilitiesforR.Aswehavealreadynoted,Rmustbeodd;henceitsvalueistwiceWplus1(the1beingnecessarilycarriedoverfromthecolumnontheright).ThepossiblevaluesforRarethen3,5,7,and9,andourarraylookslikethis:
Introduction
05
ALERUMWINP
NowinthethirdcolumnfromtheleftintheexamplethesumofthedigitsW,U,andWmustbemorethan9,since1hadtobecarriedoverfromthiscolumnintothecolumnontheleft.Thevaluesinthefirsttworowsofthearrayaretoolowforthis,however,hencewecancrossoutbothoftheselines.
AfurtherconsiderationofthesumofthedigitsW,U,andWinthethirdcolumnfromtheleft,coupledwiththefactthatMisknowntobeodd,showsthatinthethirdrowofthearrayMmustbe3whileinthefourthrowitmustbe7.Thispermitsustorejectthethirdrowofthearrayalso,foritcontains3forbothMandW,whichisimpossible.Thecorrectsolutionmustthereforebetheonecontainedinthefourthrow.HenceRis9,Uis8,Mis7,andWis4.SubstitutingtheseintotheproblemitisasimplemattertodeterminethatAis6,Iis2,Nis3,andPis1.Thiscompletesthesolution.
Asanexampleofapuzzleinvolvingthesuppressionratherthanthecodingofdigits,considerthefollowing:
Inacertainprobleminlongdivisioneverydigitexcept7wassuppressed,yielding
Restorethemissingdigits.
Introduction
Theobviouspointofattackhereisthefirstpartialproduct,—77,sinceitisthemostnearlydeterminednumberintheproblem.Now,theonlyone-digitnumberswhoseproductendsin7are3and9.Hencethefirstdigitinthequotientmustbeoneofthesenumbersandthelastdigitinthedivisormustbetheother.Ifweconsiderthepossibledivisorsoftheform—9andmultiplyeachby3,wefindthattheonlyonewhichyieldsaproductoftheform—77is59whichgives177.Alternatively,ifwetrydivisorsoftheform—3andmultiplyeachby9wefindthatonly53yieldsaproductoftheform—77.Wemustrejectthefirstofthesetwopossibili-ties,however,sincewhen59ismultipliedbytheseconddigitinthequotient,namely7,theresultis413,whereasaccord-ingtotheproblemthesecondpartialproductisoftheform—7—.Thisleaves53astheuniquepossibilityforthedivisorand9asthefirstdigitofthequotient.Finallyweobservethatthelastdigitofthequotientmustbe1sincethelastpartialproductcontainsjusttwodigits.Knowingthatthedivisoris59andthequotientis971,wecanmultiplythesenumberstoobtainthedividend.Therestoftheproblemcanthenbereconstructedatonce.
Mostofthepuzzlesinthiscollectionhaveuniquesolutions.
Afewleadtoseveraldifferentsolutions,acircumstanceal-waysindicatedinthestatementoftheproblem.Therearealsoafewpuzzlesinwhichtheobjectisnottofindananswerbuttoprovethatthereisnone,thatistoshowthatthegivendata,takenalltogether,areincompatible.Asanillustrationofapuzzleofthistype,considerthefollowingcodedsub-traction:
Ifeachletterissupposedtostandforadifferentdigit,provethatthereisnopossiblewaytoassignauniquedigittoeachlettertoformacorrectsubtraction.
WenoticefirstthatintheleftmostcolumnthesubtractionofTfromEleaves0.HenceEmustbeexactly1morethan
Introduction
T(the1havingbeenborrowedfromEforuseinthesecondcolumn).Nowintherightmostcolumn,TminusEyieldsE.(SinceEisgreaterthanT,1hadtobeborrowedfromthecolumnonthelefttomakethissubtractionpossible.)Ortoputitinthereversesense,EplusEisatwo-digitnumberhavingTintheunitsplace.HenceTmustbeeven,andofcoursedifferentfrom0sinceitappearsastheleftmostdigitinthesecondrowoftheproblem.Wethereforehavethefollowingpossibilities:
T:2468
E:6789
Amongthesethereisonlyonepair,namelyE=9,T=8,whichmeetsthefurtherrequirementthatEis1morethanT.
Nowconsiderthesubtractioninthesecondcolumnfromtheright.Wehavealreadyobservedthat1hadtobeborrowedfromtheHforuseinthecolumnontheright.HenceE,thatis9,takenawayfrom1lessthanHleavesV.Butfirstborrowing1fromanumberandthentaking9awayfromwhatremainsisclearlyjustthesameastaking10awayfromtheoriginalnumber.Andwhen10issubtractedfromanynumber,theunitsdigitofthenumbernecessarilyappearsunchangedastheunitsdigitoftheanswer.HencetheresultofthesubtractioninthesecondcolumnfromtherightmustbeHandcannotbethedifferentdigitV.Thisinescapablecontradictionprovesthattheproblemcannotbedecodedtoproduceacorrectsubtraction.
Manyofthepuzzlesinthisbookareeasytosolve,othersareratherdifficult.Itislikely,however,thatonepersonwillfindsomeeasythatanotherwillfindhard,andviceversa,formethodsofanalysisdifferfromindividualtoindividual.Withinwidelimitsthetimerequiredtosolveaparticularproblemisoflittlesignificanceasanindicationofaperson'sabilitytoreason.Foronepersonmaybypurechanceselectthecorrectassumptionforhisfirsttrial,whileanequallyalertindividualmayunluckilyexploreanynumberoffruit-lesshypothesesbeforehereachestherightone.
Introduction
Thepuzzleshereinareallnewinsubstance,thoughnotinform,forapuzzleofanentirelynewformisalmostunimagin-able.Nonehasbeenpublishedelsewhere.Allhavebeencare-fullycheckedandeach,whateveritsothermeritsorfaults,hasbeenformulatedsoastobesolvablebylogicalreasoningwithonlythebarestminimumofacquiredinformation.
Andnow—pleasantpuzzling!
C.R.WYLIEJR.
SaltLakeCity,Utah
PUZZLES
Solutionsinbackofthebook.
Inacertainbankthepositionsofcashier,manager,andtellerareheldbyBrown,JonesandSmith,thoughnotneces-sarilyrespectively.
Theteller,whowasanonlychild,earnstheleast.
Smith,whomarriedBrown'ssister,earnsmorethanthemanager.
Whatpositiondoeseachmanfill?
Clark,DawandFullermaketheirlivingascarpenter,painterandplumber,thoughnotnecessarliyrespectively.
Thepainterrecentlytriedtogetthecarpentertodo
someworkforhim,butwastoldthatthecarpenterwas
outdoingsomeremodelingfortheplumber.
Theplumbermakesmoremoneythanthepainter.DawmakesmoremoneythanClark.
FullerhasneverheardofDaw.
Whatiseachman'soccupation?
Dorothy,Jean,Virginia,Bill,Jim,andTomaresixyoungpersonswhohavebeenclosefriendsfromtheirchildhood.Theywentthroughhighschoolandcollegetogether,andwhentheyfinallypairedoffandbecameengagednothingwoulddobutatripleannouncementparty.Naturallytheywantedtobreakthenewstotheirfriendsinanunusualfashion,andaftersomethoughttheydecideduponthisscheme.
Atjusttherightmomentduringthepartyeveryonewasgivenacardbearingthecrypticinformation:
Whonowaresixwillsoonbethree,
Andgailyweconfessit,
Buthowwe'vechosenyoumayknow
Nosoonerthanyouguessit.
Tom,whoisolderthanJim,isDorothy'sbrother.Virginiaistheoldestgirl.
Thetotalageofeachcouple-to-beisthesameal-thoughnotwoofusarethesameage.
JimandJeanaretogetherasoldasBillandDorothy.
Whatthreeengagementswereannouncedattheparty?
Mr.Carter,Mr.Flynn,Mr.Milne,andMr.SavageservethelittletownofMilfordasarchitect,banker,druggist,andgrocer,thoughnotnecessarilyrespectively.Eachman'sincomeisawholenumberofdollars.
Thedruggistearnsexactlytwiceasmuchasthegrocer,thearchitectearnsexactlytwiceasmuchasthedruggist,andthebankerearnsexactlytwiceasmuchasthearchitect.
AlthoughMr.CarterdoesnotmakemoremoneythanMr.Flynn,Mr.FlynndoesnotmaketwiceasmuchasMr.Carter.
Mr.Savageearnsexactly$3776morethanMr.Milne.
Whatiseachman'soccupation?
Brown,Clark,Jones,andSmitharethenamesofthemenwhohold,thoughnotnecessarilyrespectively,thepositionsofaccountant,cashier,manager,andpresidentintheFirstNa-tionalBankofFairport.
Althoughthecashierbeatshimconsistently,thepresidentwillplaychesswithnooneelseinthebank.
Boththemanagerandthecashierarebetterchess
playersthantheaccountant.
JonesandSmitharenextdoorneighborsandfre-quentlyplaychesstogetherintheevening.
ClarkplaysabettergameofchessthanJones.
Theaccountantlivesnearthepresidentbutnotnearanyoftheothers.
Whatpositiondoeseachmanhold?
Clark,Jones,Morgan,andSmitharefourmenwhoseoccu-
pationarebutcher,druggist,grocer,andpoliceman,thoughnotnecessarilyrespectively.
ClarkandJonesareneighborsandtaketurnsdrivingeachothertowork.
JonesmakesmoremoneythanMorgan.
ClarkbeatsSmithregularlyatbowling.
Thebutcheralwayswalkstowork.
Thepolicemandoesnotnotlivenearthedruggist.
Theonlytimethegrocerandthepolicemanevermet
waswhenthepolicemanarrestedthegrocerforspeed-ing.
Thepolicemanmakesmoremoneythanthedruggist
orthegrocer.
Whatiseachman'soccupation?
Brown,Clark,JonesandSmitharefoursubstantialcitizenswhoservetheircommunityasarchitect,banker,doctor,andlawyer,thoughnotnecessarilyrespectively.
Brown,whoismoreconservativethanJonesbutmoreliberalthanSmith,isabettergolferthanthemenwhoareolderthanheisandhasalargerincomethanthemenwhoareyoungerthanClark.
Thebanker,whoearnsmorethanthearchitect,isneithertheyoungestnortheoldest.
Thedoctor,whoisapoorergolferthanthelawyer,islessconservativethanthearchitect.
Asmightbeexpected,theoldestmanisthemostconservativeandhasthelargestincome,andtheyoung-estmanisthebestgolfer.
Whatiseachman'sprofession?
Inacertaindepartmentstorethepositionofbuyer,cashier,clerk,floorwalker,andmanagerareheld,thoughnotneces-sarilyrespectively,byMissAmes,MissBrown,Mr.Conroy,Mr.Davis,andMr.Evans.
Thecashierandthemanagerwereroommatesin
college.
Thebuyerisabachelor.
EvansandMissAmeshavehadonlybusinesscon-tactswitheachother.
Mrs.Conroywasgreatlydisappointedwhenherhus-bandtoldherthatthemanagerhadrefusedtogivehimaraise.
Davisisgoingtobethebestmanwhentheclerkandthecashieraremarried.
Whatpositiondoeseachpersonhold?
Thepositionsofbuyer,cashier,clerk,floorwalker,andman-agerintheEmpireDepartmentStoreareheldbyMessrs.Allen,Bennett,Clark,Davis,andEwing.
Thecashierandthefloorwalkereatlunchfrom11:30to12:30,theotherseatfrom12:30to1:30.
Mrs.AllenandMrs.Clarkaresisters.
AllenandBennettalwaysbringtheirlunchandplaycribbageduringtheirlunchhour.
DavisandEwinghavenothingtodowitheachothersincethedayDavis,returningfromlunchearlierthanusual,foundEwingalreadygoneandreportedhimtothemanager.
Thecashierandtheclerksharebachelorquarters.
Whatpositiondoeseachmanfll?
Jane,Janice,Jack,Jasper,andJimarethenamesoffivehighschoolchums.TheirlastnamesinoneorderoranotherareCarter,Carver,Clark,Clayton,andCramer.
Jasper'smotherisdead.
Indeferencetoacertainverywealthyaunt,Mr.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中英語口語生成式AI輔助教學策略研究教學研究課題報告
- 基于大數(shù)據(jù)的中學物理教師教學畫像與職稱評審量化指標的實踐研究教學研究課題報告
- 初中物理透鏡成像規(guī)律與顯微鏡原理的實驗分析課題報告教學研究課題報告
- 《基于深度學習的圖像超分辨率重建算法在醫(yī)學影像增強中的應用》教學研究課題報告
- 初中生物探究:傳統(tǒng)發(fā)酵食品中微生物代謝途徑研究教學研究課題報告
- 控輟保學工作總結報告2024
- 工業(yè)機器人核心技術應用分析報告
- 企業(yè)內(nèi)控管理風險識別與防范措施
- 醫(yī)院急救流程與護理操作培訓教材
- 幼兒園活動教學設計案例分享
- 勞動仲裁授課課件
- 新工廠工作匯報
- 山西低空經(jīng)濟發(fā)展現(xiàn)狀
- 汽車電子工程師崗位面試問題及答案
- 錢乙完整版本
- HXN5型機車柴油機的結構特點柴油機84課件
- 高速公路維修施工方案與措施
- 紡織品的物理化學性質(zhì)試題及答案
- 發(fā)改價格〔2007〕670號建設工程監(jiān)理與相關服務收費標準
- 高空作業(yè)吊板施工方案
- 雞舍鋼結構廠房施工組織設計方案
評論
0/150
提交評論