版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省羅定市中考數學考試綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列說法正確的是(
)①近似數精確到十分位;②在,,,中,最小的是;③如圖所示,在數軸上點所表示的數為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角”;⑤如圖,在內一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.42、生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了182件,如果全組有x名同學,則根據題意列出的方程是(
)A. B.C. D.3、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.4、二次函數y=x2+px+q,當0≤x≤1時,此函數最大值與最小值的差(
)A.與p、q的值都有關 B.與p無關,但與q有關C.與p、q的值都無關 D.與p有關,但與q無關5、如圖,一次函數y=-3x+4的圖象交x軸于點A,交y軸于點B,點P在線段AB上(不與點A,B重合),過點P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時,則點P的坐標為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)二、多選題(5小題,每小題3分,共計15分)1、拋物線y=ax2+bx+c(a≠0)的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論中正確的是()A.b2﹣4ac<0B.當x>﹣1時,y隨x增大而減小C.a+b+c<0D.若方程ax2+bx+c-m=0沒有實數根,則m>2E.3a+c<02、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結論中,正確的是(
)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD3、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結論正確的是(
)A.CE平分∠ACB B. C.E是△PAB的內心 D.4、下列方程一定不是一元二次方程的是(
)A. B.C. D.5、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=1第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.2、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕洕б妫粞鼐€某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.3、對于任意實數,拋物線與軸都有公共點.則的取值范圍是_______.4、某班共有36名同學,其中男生16人,喜歡數學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為a,這名同學喜歡數學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關系是___________.5、你知道嗎,對于一元二次方程,我國古代數學家還研究過其幾何解法呢!以方程即為例加以說明.數學家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據此易得.那么在下面右邊三個構圖(矩形的頂點均落在邊長為1的小正方形網格格點上)中,能夠說明方程的正確構圖是_____.(只填序號)四、解答題(6小題,每小題10分,共計60分)1、某超市經銷一種商品,每件成本為50元.經市場調研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?2、一個二次函數y=(k﹣1).求k值.3、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.5、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應的函數解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.6、已知,是一元二次方程的兩個實數根.(1)求k的取值范圍;(2)是否存在實數k,使得等式成立?如果存在,請求出k的值,如果不存在,請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據近似數的精確度定義,可判斷①;根據實數的大小比較,可判斷②;根據點在數軸上所對應的實數,即可判斷③;根據反證法的概念,可判斷④;根據角平分線的性質,可判斷⑤.【詳解】①近似數精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數軸上點所表示的數為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數的精確度定義,實數的大小比較,點在數軸上所對應的實數,反證法的概念,角平分線的性質,熟練掌握上述知識點,是解題的關鍵.2、B【解析】【分析】由題意可知,每個同學需贈送出(x-1)件標本,x名同學需贈送出x(x-1)件標本,即可列出方程.【詳解】解:由題意可得,x(x-1)=182,故選B.【考點】本題主要考查了一元二次方程的應用,審清題意、確定等量關系是解答本題的關鍵.3、C【解析】【分析】根據切線的性質,連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質和正方形的判定、性質,解題關鍵是理解和掌握切線的性質.4、D【解析】【分析】分別求出函數解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數值.由二次函數性質可知此函數最大值與最小值必是其中的兩個,通過比較可知差值與p有關,但與q無關【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數最小值,由二次函數的最值性質可知,當0≤x≤1時,此函數最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關,但與q無關故選:.【考點】本題考查了二次函數的最值問題,掌握二次函數的性質、靈活運用配方法是解題的關鍵.5、D【解析】【分析】由點P在線段AB上可設點P的坐標為(m,-3m+4)(0<m<),進而可得出OC=m,OD=-3m+4,結合矩形OCPD的面積為1,即可得出關于m的一元二次方程,解之即可得出m的值,再將其代入點P的坐標中即可求出結論.【詳解】解:∵點P在線段AB上(不與點A,B重合),且直線AB的解析式為y=-3x+4,∴設點P的坐標為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點P的坐標為(,3)或(1,1).故選:D.【考點】本題考查了一次函數圖象上點的坐標特征以及解一元二次方程,利用一次函數圖象上點的坐標特征及,找出關于m的一元二次方程是解題的關鍵.二、多選題1、BCDE【解析】【分析】利用圖象信息,以及二次函數的性質即可一一判斷.【詳解】∵二次函數與x軸有兩個交點,∴b2-4ac>0,故A錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故B正確,∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,∴x=1時,y=a+b+c<0,故C正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=0沒有實數根,故D正確,∵對稱軸x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正確,故答案為BCDE.【考點】本題考查了二次函數圖象與系數的關系,根的判別式、拋物線與x軸的交點等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、ABC【解析】【分析】根據垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關鍵是掌握垂徑定理的應用.3、ACD【解析】【分析】連接OA,BE,根據PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據垂徑定理,進而可以判斷A;根據OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質、三角形中位線定理、及勾股定理的知識,解答本題的關鍵是熟練掌握切線的性質及圓周角定理,注意各個知識點之間的融會貫通.4、AB【解析】【分析】根據只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數,一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數,一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程是解答此題的關鍵.5、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.三、填空題1、【解析】【分析】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),再求出平移后的頂點坐標,最后求出平移后的函數關系式.【詳解】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數的圖象變換及一次函數的圖像,解題的關鍵是正確理解圖象變換的條件,本題屬于基礎題型.2、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據題意列出方程是解題的關鍵.3、【解析】【分析】由題意易得,則有,然后設,由無論a取何值時,拋物線與軸都有公共點可進行求解.【詳解】解:由拋物線與軸都有公共點可得:,即,∴,設,則,要使對于任意實數,拋物線與軸都有公共點,則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點】本題主要考查二次函數的綜合,熟練掌握二次函數的綜合是解題的關鍵.4、c>a>b【解析】【分析】根據概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為,這名同學喜歡數學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數與總情況數之比.5、②【解析】【分析】仿造案例,構造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據此易得.故答案為②.【考點】本題考查了一元二次方程的應用,仿造案例,構造出合適的大正方形是解題的關鍵.四、解答題1、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數表達式即可.(2)根據(1)中列出函數關系式,配方后依據二次函數的性質求得利潤最大值.【詳解】解:(1)根據題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價為70元時,獲得最大利潤;最大利潤為4000元.【考點】本題考查的是二次函數在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,找到等量關系,求得二次函數解析式.2、k=2【解析】【分析】根據二次函數的定義:一般地,形如y=ax2+bx+c(a、b、c是常數,a≠0)的函數,叫做二次函數可得k2-3k+4=2,且k-1≠0,再解即可.【詳解】由題意得:k2﹣3k+4=2,且k﹣1≠0,解得:k=2;【考點】此題主要考查了二次函數定義,關鍵是掌握判斷函數是否是二次函數,要抓住二次項系數不為0和自變量指數為2這個關鍵條件.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【考點】此題考查了待定系數法求函數解析式,點坐標轉換為線段長度,幾何圖形與二次函數結合的問題,最后一問推出CG=HG為解題關鍵.4、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(2)求出的P點坐標進行數形結合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經過點A(-3,0)時,d=;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;
∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經過點A(-3,0)開始向下平移到直線l經過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當直線l繼續(xù)向下平移的過程中經過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數綜合運用,關鍵是通過數形變換,確定變換后圖形與直線的位置關系.5、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030消費電子創(chuàng)新方向與用戶體驗升級趨勢報告
- 2025-2030消費品市場消費心理及品牌決策行為深度研究
- 2024年峨眉山市衛(wèi)生系統(tǒng)考試真題
- 企業(yè)培訓現狀分析及改進方案
- 酒店客房服務標準流程及培訓教材
- 高校學生心理咨詢服務體系建設方案
- 現代物流管理運輸流程優(yōu)化方案
- 橋梁工程技術創(chuàng)新與推廣評估試題及答案
- 2025年鍛造工粗糙度檢測技術試題及答案
- 2026年鋼琴考級音樂風格試卷及答案
- 魯科版高中化學必修一教案全冊
- 管理養(yǎng)老機構 養(yǎng)老機構的服務提供與管理
- 提高隧道初支平整度合格率
- 2022年環(huán)保標記試題庫(含答案)
- 2023年版測量結果的計量溯源性要求
- 建筑能耗與碳排放研究報告
- GB 29415-2013耐火電纜槽盒
- 中國古代經濟試題
- 真空采血管的分類及應用及采血順序課件
- 軟件定義汽車:產業(yè)生態(tài)創(chuàng)新白皮書
- 安裝工程實體質量情況評價表
評論
0/150
提交評論