深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第1頁(yè)
深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第2頁(yè)
深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第3頁(yè)
深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第4頁(yè)
深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

深圳橫崗街道橫崗中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.某校七年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫(xiě)出∠BQC與∠A的數(shù)量關(guān)系,并說(shuō)明理由;(4)如圖4,△ABC外角∠CBM、∠BCN的平分線交于點(diǎn)Q,∠A=64°,∠CBQ,∠BCQ的平分線交于點(diǎn)P,則∠BPC=゜,延長(zhǎng)BC至點(diǎn)E,∠ECQ的平分線與BP的延長(zhǎng)線相交于點(diǎn)R,則∠R=゜.2.如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱.(1)求點(diǎn)的坐標(biāo);(2)動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長(zhǎng)為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長(zhǎng).3.如圖,中,,,點(diǎn)為射線上一動(dòng)點(diǎn),連結(jié),作且.(1)如圖1,過(guò)點(diǎn)作交于點(diǎn),求證:;(2)如圖2,連結(jié)交于點(diǎn),若,,求證:點(diǎn)為中點(diǎn).(3)當(dāng)點(diǎn)在射線上,連結(jié)與直線交于點(diǎn),若,,則______.(直接寫(xiě)出結(jié)果)4.直角三角形中,,直線過(guò)點(diǎn).(1)當(dāng)時(shí),如圖1,分別過(guò)點(diǎn)和作直線于點(diǎn),直線于點(diǎn),與是否全等,并說(shuō)明理由;(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接,點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),分別過(guò)點(diǎn)作直線于點(diǎn),直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為等腰直角三角形時(shí),求的值.5.閱讀并填空:如圖,是等腰三角形,,是邊延長(zhǎng)線上的一點(diǎn),在邊上且聯(lián)接交于,如果,那么,為什么?解:過(guò)點(diǎn)作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因?yàn)椋ㄒ阎┧裕╛_______)所以(等量代換)所以(________)所以6.如圖,在等邊中,線段為邊上的中線.動(dòng)點(diǎn)在直線上時(shí),以為一邊在的下方作等邊,連結(jié).(1)求的度數(shù);(2)若點(diǎn)在線段上時(shí),求證:;(3)當(dāng)動(dòng)點(diǎn)在直線上時(shí),設(shè)直線與直線的交點(diǎn)為,試判斷是否為定值?并說(shuō)明理由.7.如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,BP=cm,CQ=cm.(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?(4)若點(diǎn)Q以(3)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇?8.(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.①請(qǐng)直接寫(xiě)出∠AEB的度數(shù)為_(kāi)____;②試猜想線段AD與線段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.9.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點(diǎn)D,M為線段DB上一動(dòng)點(diǎn)(不包括端點(diǎn)),點(diǎn)N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長(zhǎng)線段AB到點(diǎn)P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數(shù)量關(guān)系時(shí)對(duì)于滿足條件的任意點(diǎn)M,AN=CP始終成立?(寫(xiě)出探究過(guò)程)10.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°,∠B=n°,直接寫(xiě)出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)11.(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥l,過(guò)點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).12.問(wèn)題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC.請(qǐng)寫(xiě)出DE、BD、CE三條線段的數(shù)量關(guān)系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(-2,0),點(diǎn)A的坐標(biāo)為(-6,3),請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo).13.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問(wèn)題:(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸,等邊三角形有___________條對(duì)稱軸;(2)觀察下列一組凸多邊形(實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形;(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸.14.現(xiàn)給出一個(gè)結(jié)論:直角三角形斜邊的中線等于斜邊的一半;該結(jié)論是正確的,用圖形語(yǔ)言可以表示為:如圖1在中,,若點(diǎn)D為AB的中點(diǎn),則.請(qǐng)結(jié)合上述結(jié)論解決如下問(wèn)題:已知,點(diǎn)P是射線BA上一動(dòng)點(diǎn)(不與A,B重合)分別過(guò)點(diǎn)A,B向直線CP作垂線,垂足分別為E,F,其中Q為AB的中點(diǎn)(1)如圖2,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系____________;QE與QF的數(shù)量關(guān)系是__________(2)如圖3,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明.(3)如圖4,當(dāng)點(diǎn)P在線段BA的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫(huà)出圖形并寫(xiě)出主要證明思路.15.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.求∠BDC的大?。ㄓ煤恋拇鷶?shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,求∠BFC的大小(用含α的代數(shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).16.(1)發(fā)現(xiàn):如圖1,的內(nèi)角的平分線和外角的平分線相交于點(diǎn)。①當(dāng)時(shí),則②當(dāng)時(shí),求的度數(shù)(用含的代數(shù)式表示)﹔(2)應(yīng)用:如圖2,直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),延長(zhǎng)至,已知的角平分線與的角平分線所在的直線相交于,在中,如果一個(gè)角是另一個(gè)角的倍,請(qǐng)直接寫(xiě)出的度數(shù).17.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫(xiě)出度數(shù).18.如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中;(1)如圖2,當(dāng)∠α=時(shí),,當(dāng)∠α=時(shí),DE⊥BC;(2)如圖3,當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),邊DF、DE分別交BC、AC的延長(zhǎng)線于點(diǎn)M、N,①此時(shí)∠α的度數(shù)范圍是;②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請(qǐng)說(shuō)明理由;③若使得∠2≥2∠1,求∠α的度數(shù)范圍.19.如圖,在中,,過(guò)點(diǎn)做射線,且,點(diǎn)從點(diǎn)出發(fā),沿射線方向均勻運(yùn)動(dòng),速度為;同時(shí),點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)勻速運(yùn)動(dòng),速度為,當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為.解答下列問(wèn)題:(1)用含有的代數(shù)式表示和的長(zhǎng)度;(2)當(dāng)時(shí),請(qǐng)說(shuō)明;(3)設(shè)的面積為,求與之間的關(guān)系式.20.如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐為,點(diǎn)的坐標(biāo)為,在中,軸交軸于點(diǎn).(1)求和的度數(shù);(2)如圖,在圖的基礎(chǔ)上,以點(diǎn)為一銳角頂點(diǎn)作,,交于點(diǎn),求證:;(3)在第()問(wèn)的條件下,若點(diǎn)的標(biāo)為,求四邊形的面積.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)122°;(2);(3);(4)119,29;【解析】【分析】(1)根據(jù)三角形的內(nèi)角和角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用與表示出,再利用與表示出,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出與,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解;(4)根據(jù)(1),(3)的結(jié)論可以得出∠BPC的度數(shù);根據(jù)(2)的結(jié)論可以得到∠R的度數(shù).【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)如圖2示,和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論.(4)由(3)可知,,再根據(jù)(1),可得;由(2)可得:;故答案為:119,29.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.2.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對(duì)稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點(diǎn)的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點(diǎn)、關(guān)于軸對(duì)稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點(diǎn)C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點(diǎn)到的距離為,∴,∴,∴,延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點(diǎn)睛】本題是三角形綜合題,涉及的知識(shí)有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運(yùn)用面積法求線段的長(zhǎng)是解本題的關(guān)鍵.3.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)或【解析】【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長(zhǎng),得到答案;(3)過(guò)F作FD⊥AG的延長(zhǎng)線交于點(diǎn)D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計(jì)算即可.【詳解】解:(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點(diǎn)為BC中點(diǎn);(3)當(dāng)點(diǎn)E在CB的延長(zhǎng)線上時(shí),過(guò)F作FD⊥AG的延長(zhǎng)線交于點(diǎn)D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,當(dāng)點(diǎn)E在線段BC上時(shí),,故答案為:或.【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.4.(1)全等,理由見(jiàn)解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點(diǎn)F沿C→B路徑運(yùn)動(dòng)和點(diǎn)F沿B→C路徑運(yùn)動(dòng)兩種情況,根據(jù)等腰三角形的定義列出算式,計(jì)算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質(zhì)可知,CF=CB=6,∴CN=6-3t,點(diǎn)N在BC上時(shí),△CMN為等腰直角三角形,當(dāng)點(diǎn)N沿C→B路徑運(yùn)動(dòng)時(shí),由題意得,8-t=3t-6,解得,t=3.5,當(dāng)點(diǎn)N沿B→C路徑運(yùn)動(dòng)時(shí),由題意得,8-t=18-3t,解得,t=5,綜上所述,當(dāng)t=3.5秒或5秒時(shí),△CMN為等腰直角三角形;【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理,靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.5.見(jiàn)解析【解析】【分析】先根據(jù)平行線的性質(zhì),得到角的關(guān)系,然后證明,寫(xiě)出證明過(guò)程和依據(jù)即可.【詳解】解:過(guò)點(diǎn)作交于,∴(兩直線平行,同位角相等),∴(兩直線平行,內(nèi)錯(cuò)角相等),在與中,∴,()∴(全等三角形對(duì)應(yīng)邊相等)∵(已知)∴(等邊對(duì)等角)∴(等量代換)∴(等角對(duì)等邊)∴;【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線的性質(zhì),解題的關(guān)鍵是由平行線的性質(zhì)正確找到證明三角形全等的條件,從而進(jìn)行證明.6.(1)30°;(2)證明見(jiàn)解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;(2)根據(jù)等邊三角形的性質(zhì)就可以得出,,,,由等式的性質(zhì)就可以,根據(jù)就可以得出;(3)分情況討論:當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,就可以求出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,可以得出而有而得出結(jié)論;當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,通過(guò)得出同樣可以得出結(jié)論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當(dāng)點(diǎn)在線段上時(shí),如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當(dāng)動(dòng)點(diǎn)在直線上時(shí),是定值,.【點(diǎn)睛】此題考查等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),等邊三角形三線合一的性質(zhì),解題中注意分類討論的思想解題.7.(1)BP=3cm,CQ=3cm;(2)全等,理由詳見(jiàn)解析;(3);(4)經(jīng)過(guò)s點(diǎn)P與點(diǎn)Q第一次相遇.【解析】【分析】(1)速度和時(shí)間相乘可得BP、CQ的長(zhǎng);(2)利用SAS可證三角形全等;(3)三角形全等,則可得出BP=PC,CQ=BD,從而求出t的值;(4)第一次相遇,即點(diǎn)Q第一次追上點(diǎn)P,即點(diǎn)Q的運(yùn)動(dòng)的路程比點(diǎn)P運(yùn)動(dòng)的路程多10+10=20cm的長(zhǎng)度.【詳解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,點(diǎn)D為AB的中點(diǎn),∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP與CQ不是對(duì)應(yīng)邊,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t=s,∴cm/s;(4)設(shè)經(jīng)過(guò)x秒后點(diǎn)P與點(diǎn)Q第一次相遇.由題意,得x=3x+2×10,解得∴經(jīng)過(guò)s點(diǎn)P與點(diǎn)Q第一次相遇.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問(wèn)題,解題關(guān)鍵還是全等的證明和利用,將動(dòng)點(diǎn)問(wèn)題視為定點(diǎn)問(wèn)題來(lái)分析可簡(jiǎn)化思考過(guò)程.8.(1)①60°;②AD=BE.證明見(jiàn)解析;(2)∠AEB=90°;AE=2CM+BE;理由見(jiàn)解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的性質(zhì)、三角形全等的判定與性質(zhì)等知識(shí),解題時(shí)需注意運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)解決相似問(wèn)題.9.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,證明見(jiàn)解析.【解析】【分析】(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過(guò)點(diǎn)N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過(guò)點(diǎn)N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過(guò)點(diǎn)N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,理由如下:過(guò)點(diǎn)N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點(diǎn)睛】本題三角形綜合題,考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,三角形面積公式等知識(shí),添加恰當(dāng)輔助線構(gòu)造全等三角形是本題的關(guān)鍵.10.(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫(huà)圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)是“鄰三分線”時(shí),;當(dāng)是“鄰三分線”時(shí),;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進(jìn)行畫(huà)圖計(jì)算:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),①當(dāng)時(shí),;②當(dāng)時(shí),.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握三角形的外角性質(zhì).注意要分情況討論.11.(1)見(jiàn)解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判斷出∠ACB=∠ADC,再判斷出∠CAD=∠BCE,進(jìn)而判斷出△ACD≌△CBE,即可得出結(jié)論;(2)先判斷出MF=NG,OF=MG,進(jìn)而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出結(jié)論;(3)先求出OP=3,由y=0得x=1,進(jìn)而得出Q(1,0),OQ=1,再判斷出PQ=SQ,即可判斷出OH=4,SH=0Q=1,進(jìn)而求出直線PR的解析式,即可得出結(jié)論.【詳解】證明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如圖2,過(guò)點(diǎn)M作MF⊥y軸,垂足為F,過(guò)點(diǎn)N作NG⊥MF,交FM的延長(zhǎng)線于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(jìn)(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴點(diǎn)N的坐標(biāo)為(4,2),(3)如圖3,過(guò)點(diǎn)Q作QS⊥PQ,交PR于S,過(guò)點(diǎn)S作SH⊥x軸于H,對(duì)于直線y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),設(shè)直線PR為y=kx+b,則,解得∴直線PR為y=﹣x+3由y=0得,x=6∴R(6,0).【點(diǎn)睛】本題是一次函數(shù)綜合題,主要考查了待定系數(shù)法,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.12.(1)證明見(jiàn)解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(2)根據(jù)三角形內(nèi)角和定理、平角的定義證明∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(3)根據(jù)△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.【詳解】(1)證明:∵BD⊥直線m,CE⊥直線m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:數(shù)量關(guān)系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如圖,作AE⊥x軸于E,BF⊥x軸于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴點(diǎn)B的坐標(biāo)為B(1,4).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.13.(1)1,2,3;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析;(4)答案見(jiàn)解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫(huà)圖即可;(3)長(zhǎng)方形具有兩條對(duì)稱軸,在長(zhǎng)方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對(duì)稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對(duì)稱軸,非正方形的長(zhǎng)方形有2條對(duì)稱軸,等邊三角形有3條對(duì)稱軸,故答案為1,2,3;(2)恰好有1條對(duì)稱軸的凸五邊形如圖中所示.(3)恰好有2條對(duì)稱軸的凸六邊形如圖所示.(4)恰好有3條對(duì)稱軸的凸六邊形如圖所示.14.(1)AE//BF;QE=QF;(2)QE=QF,證明見(jiàn)解析;(3)結(jié)論成立,證明見(jiàn)解析.【解析】【分析】(1)根據(jù)AAS得到,得到、QE=QF,根據(jù)內(nèi)錯(cuò)角相等兩直線平行,得到AE//BF;(2)延長(zhǎng)EQ交BF于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明;(3)延長(zhǎng)EQ交FB的延長(zhǎng)于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明.【詳解】(1)AE//BF;QE=QF(2)QE=QF證明:延長(zhǎng)EQ交BF于D,,(3)當(dāng)點(diǎn)P在線段BA延長(zhǎng)線上時(shí),此時(shí)(2)中結(jié)論成立證明:延長(zhǎng)EQ交FB的延長(zhǎng)于D因?yàn)锳E//BF所以EQ=QF【點(diǎn)睛】本題考查了三角形全等的判定方法:AAS,平行線的性質(zhì),根據(jù)P點(diǎn)位置不同,畫(huà)出正確的圖形,找到AAS的條件是解決本題的關(guān)鍵.15.(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點(diǎn)M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點(diǎn)睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).16.(1)①25°;②;(2).【解析】【分析】(1)①利用外角和性質(zhì)∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,再利用角平分線的定義進(jìn)行等量代換即可;②與①同理可得;(2)根據(jù)題意分情況進(jìn)行討論,用到(1)的結(jié)論計(jì)算即可【詳解】(1)①∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,∵OB、OC分別平分∠ABC、∠ACD,∴∠ACD=2∠OCD,∠ABC=2∠OBC,∴2∠OCD=2∠OBC+∠A,∴∠A=2∠BOC,∵∠A=50°,∴∠BOC=∠A=25°,故填:25°;②,且平分平分(2)的角平分線與的角平分線所在的直線相交于,符合題意的情況有兩種:①根據(jù)(1)可知:②根據(jù)(1)可知:【點(diǎn)睛】本題考查三角形外角和的性質(zhì)、角平分線的定義,利用分類討論的數(shù)學(xué)思想是關(guān)鍵.17.(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時(shí),如圖3,由(1)知,,;當(dāng)時(shí),如圖4,,點(diǎn),重合,,,由(1)知,,,即當(dāng)以、、為頂點(diǎn)的三角形是直角三角形時(shí),度數(shù)為或.【點(diǎn)睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計(jì)算,求出是解本題的關(guān)鍵.18.(1)10°,100°;(2)①55°<α<85°;②∠1與∠2度數(shù)的和不變,理由見(jiàn)解析③55°<α≤60°.【解析】【分析】(1)當(dāng)∠EDA=∠B=40°時(shí),,得出30°+α=40°,即可得出結(jié)果;當(dāng)時(shí),DE⊥AB,得出50°+α+30°=180°,即可得出結(jié)果;(2)①由已知得出∠ACD=45°,∠A=50°,推出∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),α+30°=85°,解得α=55°,當(dāng)點(diǎn)C在DF邊上時(shí),α=85°,即可得出結(jié)果;②連接MN,由三角形內(nèi)角和定理得出∠CNM+∠CMN+∠MCN=180°,則∠CNM+∠CMN=90°,由三角形內(nèi)角和定理得出∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,即可得出結(jié)論;③由,∠1+∠2=60°,得出∠2≥2(60°?∠2),解得∠2≥40°,由三角形內(nèi)角和定理得出∠2+∠NDM+α+∠A=180°,即∠2+30°+α+50°=180°,則∠2=100°?α,得出100°?α≥40°,解得α≤60°,再由當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),55°<α<85°,即可得出結(jié)果.【詳解】解:(1)∵∠B=40°,∴當(dāng)∠EDA=∠B=40°時(shí),,而∠EDF=30°,∴,解得:α=10°;當(dāng)時(shí),DE⊥AB,此時(shí)∠A+∠EDA=180°,,∴,解得:α=100°;故答案為10°,100°;(2)①∵∠ABC=40°,CD平分∠ACB,∴∠ACD=45°,∠A=50°,∴∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),,解得:,當(dāng)點(diǎn)C在DF邊上時(shí),,∴當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),;故答案為:;②∠1與∠2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論