版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆山東省菏澤市重點(diǎn)名校中考數(shù)學(xué)押題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.甲、乙兩人約好步行沿同一路線同一方向在某景點(diǎn)集合,已知甲乙二人相距660米,二人同時(shí)出發(fā),走了24分鐘時(shí),由于乙距離景點(diǎn)近,先到達(dá)等候甲,甲共走了30分鐘也到達(dá)了景點(diǎn)與乙相遇.在整個(gè)行走過(guò)程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時(shí)間(分鐘)之間的關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點(diǎn)2100米 D.乙距離景點(diǎn)420米2.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度的一半為半徑作弧,相交于點(diǎn)E,F(xiàn),過(guò)點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連接CD,則△ACD的周長(zhǎng)為()A.13 B.17 C.18 D.254.下面運(yùn)算結(jié)果為的是A. B. C. D.5.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.6.下列各運(yùn)算中,計(jì)算正確的是()A. B.C. D.7.將拋物線向左平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,得到的拋物線的函數(shù)表達(dá)式為()A.B.C.D.8.下列計(jì)算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x9.如圖,已知點(diǎn)A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點(diǎn),且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣410.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過(guò)點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長(zhǎng)為()A. B. C. D.11.?dāng)?shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,512.有下列四個(gè)命題:①相等的角是對(duì)頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進(jìn)行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個(gè)數(shù)有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.圖,A,B是反比例函數(shù)y=圖象上的兩點(diǎn),過(guò)點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D.若D為OB的中點(diǎn),△AOD的面積為3,則k的值為________.14.如圖,點(diǎn)G是△ABC的重心,CG的延長(zhǎng)線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點(diǎn)D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.15.計(jì)算:______.16.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.17.如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.18.如圖,小明在A時(shí)測(cè)得某樹的影長(zhǎng)為3米,B時(shí)又測(cè)得該樹的影長(zhǎng)為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.求反比例函數(shù)的解析式;若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.20.(6分)山地自行車越來(lái)越受中學(xué)生的喜愛(ài).一網(wǎng)店經(jīng)營(yíng)的一個(gè)型號(hào)山地自行車,今年一月份銷售額為30000元,二月份每輛車售價(jià)比一月份每輛車售價(jià)降價(jià)100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.求二月份每輛車售價(jià)是多少元?為了促銷,三月份每輛車售價(jià)比二月份每輛車售價(jià)降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進(jìn)價(jià)是多少元?21.(6分)如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.求拋物線的解析式;拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由.22.(8分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點(diǎn),延長(zhǎng)DE到點(diǎn)F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時(shí),求證:四邊形BCFE是菱形.23.(8分)如圖,已知ABCD是邊長(zhǎng)為3的正方形,點(diǎn)P在線段BC上,點(diǎn)G在線段AD上,PD=PG,DF⊥PG于點(diǎn)H,交AB于點(diǎn)F,將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.24.(10分)某中學(xué)七、八年級(jí)各選派10名選手參加知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a、b.隊(duì)別平均分中位數(shù)方差合格率優(yōu)秀率七年級(jí)6.7m3.4190%n八年級(jí)7.17.51.6980%10%(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí);所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.25.(10分)為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽.從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請(qǐng)解答下列問(wèn)題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補(bǔ)全頻數(shù)分布直方圖;(4)若成績(jī)?cè)?0分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀學(xué)生有名.26.(12分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;(3)拓展延伸把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.27.(12分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)圖中信息以及路程、速度、時(shí)間之間的關(guān)系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設(shè)乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項(xiàng)不符合題意,70×30=2100,故選項(xiàng)C正確,不符合題意,24×60=1440米,乙距離景點(diǎn)1440米,故D錯(cuò)誤,故選D.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,行程問(wèn)題等知識(shí),解題的關(guān)鍵是讀懂圖象信息,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.2、A【解析】
根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長(zhǎng),即可得出三角形的面積.【詳解】解:過(guò)點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點(diǎn)睛】此題主要考查了解直角三角形的知識(shí),作出AD⊥BC,進(jìn)而得出相關(guān)線段的長(zhǎng)度是解決問(wèn)題的關(guān)鍵.3、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據(jù)勾股定理求得AB=13.根據(jù)題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長(zhǎng)為AC+CD+AD=AC+AB=5+13=18.故選C.4、B【解析】
根據(jù)合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計(jì)算即可判斷.【詳解】.,此選項(xiàng)不符合題意;.,此選項(xiàng)符合題意;.,此選項(xiàng)不符合題意;.,此選項(xiàng)不符合題意;故選:.【點(diǎn)睛】本題考查了整式的運(yùn)算,解題的關(guān)鍵是掌握合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.5、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當(dāng)0<x<2時(shí),AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯(cuò)誤,答案D錯(cuò)誤,∵a=>0,開口向上;(2)當(dāng)2≤x≤6時(shí),如圖,此時(shí)y=×2×2=2,(3)當(dāng)6<x≤8時(shí),如圖,設(shè)△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯(cuò)誤,故選A.點(diǎn)睛:本題考查函數(shù)的圖象.在運(yùn)動(dòng)的過(guò)程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.6、D【解析】
利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項(xiàng)錯(cuò)誤;B、,該選項(xiàng)錯(cuò)誤;C、,該選項(xiàng)錯(cuò)誤;D、,該選項(xiàng)正確;故選:D.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關(guān)鍵.7、A【解析】
先確定拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),再根據(jù)點(diǎn)平移的規(guī)律得到點(diǎn)(0,0)平移后所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2,-1),然后根據(jù)頂點(diǎn)式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),把點(diǎn)(0,0)向左平移1個(gè)單位,再向下平移2個(gè)單位長(zhǎng)度所得對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.
故選A.8、C【解析】
根據(jù)合并同類項(xiàng)法則和去括號(hào)法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項(xiàng)錯(cuò)誤;
B.x+x=2x,故此選項(xiàng)錯(cuò)誤;
C.-(x-1)=-x+1,故此選項(xiàng)正確;
D.3與x不能合并,此選項(xiàng)錯(cuò)誤;
故選C.【點(diǎn)睛】本題考查了整式的加減,熟練掌握運(yùn)算法則是解題的關(guān)鍵.9、D【解析】
首先過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,易得△OBD∽△AOC,又由點(diǎn)A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故選:D.【點(diǎn)睛】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時(shí)注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法。10、A【解析】
過(guò)E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長(zhǎng)列方程即可得到結(jié)論.【詳解】過(guò)E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.11、D【解析】
根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計(jì)算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.12、D【解析】
根據(jù)對(duì)頂角的定義,平行線的性質(zhì)以及正五邊形的內(nèi)角及鑲嵌的知識(shí),逐一判斷.【詳解】解:①對(duì)頂角有位置及大小關(guān)系的要求,相等的角不一定是對(duì)頂角,故為假命題;②只有當(dāng)兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內(nèi)角和為540°,則其內(nèi)角為108°,而360°并不是108°的整數(shù)倍,不能進(jìn)行平面鑲嵌,故為假命題;④在同一平面內(nèi),垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點(diǎn)睛】本題考查了命題與證明.對(duì)頂角,垂線,同位角,鑲嵌的相關(guān)概念.關(guān)鍵是熟悉這些概念,正確判斷.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】先設(shè)點(diǎn)D坐標(biāo)為(a,b),得出點(diǎn)B的坐標(biāo)為(2a,2b),A的坐標(biāo)為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點(diǎn)D坐標(biāo)為(a,b),∵點(diǎn)D為OB的中點(diǎn),∴點(diǎn)B的坐標(biāo)為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標(biāo)為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點(diǎn)睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運(yùn)用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.14、18【解析】
三角形的重心是三條中線的交點(diǎn),根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點(diǎn)G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點(diǎn)睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強(qiáng),對(duì)學(xué)生要求較高.15、【解析】原式==.故答案為:.16、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點(diǎn):相似三角形的性質(zhì).17、1【解析】
根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.18、1【解析】
根據(jù)題意,畫出示意圖,易得:Rt△EDC∽R(shí)t△FDC,進(jìn)而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽R(shí)t△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)y=;(2)1;【解析】
(1)把點(diǎn)B的坐標(biāo)代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點(diǎn)B(3,4)、C(m,0)的坐標(biāo)求得邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標(biāo)代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點(diǎn)睛】本題為反比例函數(shù)的綜合應(yīng)用,考查的知識(shí)點(diǎn)有待定系數(shù)法、平行四邊形的性質(zhì)、中點(diǎn)的求法.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用m表示出E點(diǎn)的坐標(biāo)是解題的關(guān)鍵.20、(1)二月份每輛車售價(jià)是900元;(2)每輛山地自行車的進(jìn)價(jià)是600元.【解析】
(1)設(shè)二月份每輛車售價(jià)為x元,則一月份每輛車售價(jià)為(x+100)元,根據(jù)數(shù)量=總價(jià)÷單價(jià),即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;(2)設(shè)每輛山地自行車的進(jìn)價(jià)為y元,根據(jù)利潤(rùn)=售價(jià)﹣進(jìn)價(jià),即可得出關(guān)于y的一元一次方程,解之即可得出結(jié)論.【詳解】(1)設(shè)二月份每輛車售價(jià)為x元,則一月份每輛車售價(jià)為(x+100)元,根據(jù)題意得:,解得:x=900,經(jīng)檢驗(yàn),x=900是原分式方程的解,答:二月份每輛車售價(jià)是900元;(2)設(shè)每輛山地自行車的進(jìn)價(jià)為y元,根據(jù)題意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每輛山地自行車的進(jìn)價(jià)是600元.【點(diǎn)睛】本題考查了分式方程的應(yīng)用、一元一次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.21、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長(zhǎng).(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對(duì)應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長(zhǎng),根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點(diǎn)C(0,4),∴,解得.∴直線AC的解析式為.∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,∴M點(diǎn)的坐標(biāo)為(m,).∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,∴點(diǎn)P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.22、(1)見解析;(2)見解析【解析】
(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點(diǎn)∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.23、(1)證明見解析;(2)1.【解析】
作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個(gè)直角即可證明△ADF≌△MPG,從而得出對(duì)應(yīng)邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據(jù)旋轉(zhuǎn),得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據(jù)勾股定理和等量代換求出邊長(zhǎng)DF的值;根據(jù)相似三角形得出對(duì)應(yīng)邊成比例求出GH的值,從而求出高PH的值;最后根據(jù)面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點(diǎn)睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質(zhì),本題的關(guān)鍵是求邊長(zhǎng)和高的值24、(1)a=5,b=1;(2)6;20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí).【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級(jí)成績(jī)?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí),成績(jī)比較穩(wěn)定,故八年級(jí)隊(duì)比七年級(jí)隊(duì)成績(jī)好.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.統(tǒng)計(jì)表;3.加權(quán)平均數(shù);4.中位數(shù);5.方差.25、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數(shù)比B組小24,而A組的頻率比B組小12%,則可計(jì)算出調(diào)查的總?cè)藬?shù),然后計(jì)算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據(jù)百分比之和為1可得E組百分比;(3)計(jì)算出C和E組的頻數(shù)后補(bǔ)全頻數(shù)分布直方圖;(4)利用樣本估計(jì)總體,用2000乘以D組和E組的頻率和即可.本題解析:()調(diào)查的總?cè)藬?shù)為,∴,,()部分所對(duì)的圓心角,即,組所占比例為:,()組的頻數(shù)為,組的頻數(shù)為,補(bǔ)全頻數(shù)分布直方圖為:(),∴估計(jì)成績(jī)優(yōu)秀的學(xué)生有人.點(diǎn)睛:本題考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),要認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問(wèn)題,也考查了用樣本估計(jì)總體.26、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度解析(2026)《GBT 19276.1-2003水性培養(yǎng)液中材料最終需氧生物分解能力的測(cè)定 采用測(cè)定密閉呼吸計(jì)中需氧量的方法》
- 節(jié)能鎮(zhèn)流器項(xiàng)目可行性研究報(bào)告(立項(xiàng)備案申請(qǐng))
- 酒店管理專業(yè)面試題及參考答案手冊(cè)
- 年產(chǎn)xxx干燥器項(xiàng)目可行性分析報(bào)告
- 帶表角度尺項(xiàng)目可行性分析報(bào)告范文
- 型球閥項(xiàng)目可行性分析報(bào)告范文
- 深度解析(2026)GBT 18838.1-2002涂覆涂料前鋼材表面處理 噴射清理用金屬磨料的技術(shù)要求 導(dǎo)則和分類
- 年產(chǎn)xxx大棚膜吹膜機(jī)項(xiàng)目可行性分析報(bào)告
- 特殊人群貝葉斯劑量調(diào)整方案
- 供應(yīng)鏈專員面試題及采購(gòu)流程含答案
- 電梯形式檢測(cè)報(bào)告
- 脫硝催化劑拆除及安裝(四措兩案)
- GB/T 19867.6-2016激光-電弧復(fù)合焊接工藝規(guī)程
- 第八章散糧裝卸工藝
- PET-成像原理掃描模式和圖像分析-課件
- 體外診斷試劑工作程序-全套
- 施工企業(yè)管理課件
- 《大衛(wèi)-不可以》繪本
- DB32 4181-2021 行政執(zhí)法案卷制作及評(píng)查規(guī)范
- JJF (蘇) 178-2015 防潮柜溫度、濕度校準(zhǔn)規(guī)范-(現(xiàn)行有效)
- 創(chuàng)傷急救四大技術(shù)共46張課件
評(píng)論
0/150
提交評(píng)論