難點解析-滬科版9年級下冊期末測試卷附答案詳解(達標題)_第1頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(達標題)_第2頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(達標題)_第3頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(達標題)_第4頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(達標題)_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,該幾何體的左視圖是()A. B. C. D.2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.4、如圖,在△ABC中,∠BAC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)得到△DEC,點A,B的對應(yīng)點分別為D,E,連接AD.當點A,D,E在同一條直線上時,則∠BAD的大小是()A.80° B.70° C.60° D.50°5、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞6、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.7、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.8、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.2、如圖,在等腰直角中,已知,將繞點逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.3、如圖,在平面直角坐標系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進行下去,得到Rt△OA2A3,Rt△OA3A4…,若點A0的坐標是(1,0),則點A2021的橫坐標是___________.4、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當位置隨機地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計實驗結(jié)果),他將若干次有效實驗的結(jié)果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為_____m2.5、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.6、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.7、為了落實“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.三、解答題(7小題,每小題0分,共計0分)1、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.2、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.3、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.4、在平面直角坐標系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關(guān)于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應(yīng)點),則稱線段AB是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.例如:在圖1中,線段是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.(1)如圖2,的橫、縱坐標都是整數(shù).①在線段中,⊙O的關(guān)于直線y=x+2對稱的“關(guān)聯(lián)線段”是_______;②若線段中,存在⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關(guān)于直線對稱的“關(guān)聯(lián)線段”,直接寫出b的最大值和最小值,以及相應(yīng)的BC長.5、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.6、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.7、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.-參考答案-一、單選題1、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關(guān)鍵.2、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進而勾股定理列出方程求得半徑,進而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.4、A【分析】根據(jù)三角形旋轉(zhuǎn)得出,,根據(jù)點A,D,E在同一條直線上利用鄰補角關(guān)系求出,根據(jù)等腰三角形的性質(zhì)即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點C逆時針旋轉(zhuǎn)得到,∴,,∴∠ADC=∠DAC,∵點A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點睛】本題考查三角形旋轉(zhuǎn)性質(zhì),鄰補角的性質(zhì),等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).5、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識是解題的關(guān)鍵.6、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.7、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.8、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,根據(jù)切線的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了相似三角形的判定與性質(zhì).二、填空題1、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.2、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.3、22020【分析】根據(jù),,點的坐標是,得,點的橫坐標是,點的橫坐標是-,同理可得點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,依次進行下去,可得點的橫坐標,進而求得的橫坐標.【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點A0的坐標是(1,0),∴OA0=1,∴點A1的橫坐標是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點A2的橫坐標是-OA2=-2=-21,依次進行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點A3的橫坐標是﹣2OA2=﹣8=﹣23,點A4的橫坐標是﹣8=﹣23,點A5的橫坐標是OA5=×2OA4=2OA3=4OA2=16=24,點A6的橫坐標是2OA5=2×2OA4=23OA3=64=26,點A7的橫坐標是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點A2021的橫坐標與的坐標規(guī)律一致是22020.故答案為:22020.【點睛】本題考查了規(guī)律型——點的坐標,解決本題的關(guān)鍵是理解動點的運動過程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點A3n在軸上,且坐標為.4、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大小;繼而根據(jù)折線圖用頻率估計概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當事件A試驗次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點睛】本題考查幾何概率以及用頻率估計概率,并在此基礎(chǔ)上進行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當中找到考點化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.5、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.6、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.7、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.三、解答題1、邊長為,邊心距為【分析】過點O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心距為.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及勾股定理,正多邊形各邊所對的外接圓的圓心角都相等,正多邊形每一邊所對的外接圓的圓心角叫做正多邊形的中心角,正n邊形每個中心角都等于.2、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設(shè)w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.3、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.4、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據(jù)題意作出圖象即可解答;②根據(jù)“關(guān)聯(lián)線段”的定義,可確定線段A2B2存在“關(guān)聯(lián)線段”,再分情況解答即可;(2)設(shè)與AB對應(yīng)的“關(guān)聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最?。蝗缓蠓謩e畫出圖形求解即可;【詳解】解:(1)①作出各點關(guān)于直線y=x+2的對稱點,如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”;直線A2B2的解析式是y=-x+5,且,故A2B2是⊙O的關(guān)于直線y=x+2對稱的“關(guān)聯(lián)線段”;當A2B2是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,且對應(yīng)兩個端點分別是(0,1)與(1,0)時,m=3,當A2B2是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,且對應(yīng)兩個端點分別是(0,-1)與(-1,0)時,m=2,故答案為:2或3.(2)設(shè)與AB對應(yīng)的“關(guān)聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最??;當點A’(1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(4,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;當點A’(-1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(2,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=;即綜上,b的最大值為,此時BC=;b的最小值為,此時BC=.【點睛】本題是新定義綜合題,主要考查了一次函數(shù)圖象上點的坐標特點、圓的有關(guān)知識、等邊三角形的判定和性質(zhì)、勾股定理、軸對稱的性質(zhì)等知識,正確理解新定義的含義、靈活應(yīng)用數(shù)形結(jié)合思想是解題的關(guān)鍵.5、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點A作AF⊥EC交EC于點F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論