山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省日照市五蓮縣重點中學(xué)2026屆中考數(shù)學(xué)考前最后一卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于任意實數(shù)k,關(guān)于x的方程的根的情況為A.有兩個相等的實數(shù)根 B.沒有實數(shù)根C.有兩個不相等的實數(shù)根 D.無法確定2.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.103.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④4.的相反數(shù)是A.4 B. C. D.5.某班組織了針對全班同學(xué)關(guān)于“你最喜歡的一項體育活動”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結(jié)論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學(xué)生 D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的10%6.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.7.﹣6的倒數(shù)是()A.﹣16 B.18.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π9.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°10.圖中三視圖對應(yīng)的正三棱柱是()A. B. C. D.11.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進(jìn)入公園,則甲、乙兩位游客恰好從同一個入口進(jìn)入公園的概率是()A. B. C. D.12.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.14.一個多邊形,除了一個內(nèi)角外,其余各角的和為2750°,則這一內(nèi)角為_____度.15.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.16.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標(biāo)原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.17.a(chǎn)(a+b)﹣b(a+b)=_____.18.現(xiàn)有三張分別標(biāo)有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(a,b)在直線圖象上的概率為__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;20.(6分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉(zhuǎn)60°得到點E,連接CE.(1)當(dāng)點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當(dāng)△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)21.(6分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.22.(8分)某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價比每臺甲種品牌空調(diào)的進(jìn)價高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進(jìn)貨價;該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.23.(8分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關(guān)于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標(biāo).(2)求點M的坐標(biāo)(用含a的代數(shù)式表示).(3)當(dāng)點N在第一象限,且∠OMB=∠ONA時,求a的值.24.(10分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.25.(10分)先化簡,再求值:,且x為滿足﹣3<x<2的整數(shù).26.(12分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出m=,n=;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?已知A、B兩位同學(xué)都最認(rèn)可“微信”,C同學(xué)最認(rèn)可“支付寶”D同學(xué)最認(rèn)可“網(wǎng)購”從這四名同學(xué)中抽取兩名同學(xué),請你通過樹狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.27.(12分)在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數(shù)根.故選C.2、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.3、B【解析】

根據(jù)拋物線圖象性質(zhì)確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側(cè),則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.4、A【解析】

直接利用相反數(shù)的定義結(jié)合絕對值的定義分析得出答案.【詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數(shù),正確把握相關(guān)定義是解題的關(guān)鍵.5、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進(jìn)行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學(xué)生,故C選項正確;D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進(jìn)行解題是關(guān)鍵.6、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.7、A【解析】解:﹣6的倒數(shù)是﹣168、D【解析】

利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.9、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質(zhì),熟知兩直線平行,同位角相等是解答此題的關(guān)鍵.10、A【解析】

由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側(cè)棱在正前方,從而求解【詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側(cè)棱在正前方,于是可判定A選項正確.故選A.【點睛】本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關(guān)鍵.11、B【解析】

畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個入口進(jìn)入公園的結(jié)果數(shù),再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個入口進(jìn)入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個入口進(jìn)入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.12、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1<r<.【解析】

首先根據(jù)題意求得對角線AC的長,設(shè)圓A的半徑為R,根據(jù)點B在圓A外,得出0<R<1,則-1<-R<0,再根據(jù)圓A與圓C外切可得R+r=,利用不等式的性質(zhì)即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設(shè)圓A的半徑為R,

∵點B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關(guān)系,點與圓的位置關(guān)系,正方形的性質(zhì),勾股定理,不等式的性質(zhì).掌握位置關(guān)系與數(shù)量之間的關(guān)系是解題的關(guān)鍵.14、130【解析】分析:n邊形的內(nèi)角和是因而內(nèi)角和一定是180度的倍數(shù).而多邊形的內(nèi)角一定大于0,并且小于180度,因而內(nèi)角和除去一個內(nèi)角的值,這個值除以180度,所得數(shù)值比邊數(shù)要小,小的值小于1.詳解:設(shè)多邊形的邊數(shù)為x,由題意有解得因而多邊形的邊數(shù)是18,則這一內(nèi)角為故答案為點睛:考查多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式是解題的關(guān)鍵.15、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.16、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設(shè)OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標(biāo)為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標(biāo)為(,),將點C的坐標(biāo)代入反比例函數(shù)解析式可得:,將點D的坐標(biāo)代入反比例函數(shù)解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數(shù)圖象上點的坐標(biāo)特征;2.等邊三角形的性質(zhì).17、(a+b)(a﹣b).【解析】

先確定公因式為(a+b),然后提取公因式后整理即可.【詳解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.18、【解析】

根據(jù)題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結(jié)果,根據(jù)一次函數(shù)的性質(zhì)求出在圖象上的點,即可得出答案.【詳解】畫樹狀圖得:

∵共有6種等可能的結(jié)果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),

∴點(a,b)在圖象上的概率為.【點睛】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)2(2)當(dāng)x=4時,y最小=88平方米【解析】(1)根據(jù)題意得方程解即可;(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質(zhì)求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當(dāng)x=時,S有最大值,S最大=;②當(dāng)x=4時,S有最小值,S最?。?×(31-22)=88“點睛”此題考查了二次函數(shù)、一元二次不等式的實際應(yīng)用問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.20、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當(dāng)點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形;(3)如圖4中,當(dāng)E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當(dāng)點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當(dāng)BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當(dāng)CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當(dāng)E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設(shè)E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【點睛】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,學(xué)會利用垂線段最短解決最值問題,屬于中考壓軸題.21、(1)詳見解析;(1).【解析】

(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規(guī)作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關(guān)鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關(guān)鍵.22、(1)甲種品牌的進(jìn)價為1500元,乙種品牌空調(diào)的進(jìn)價為1800元;(2)當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元【解析】

(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價為x元/臺,則乙種品牌空調(diào)的進(jìn)貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關(guān)于x的分式方程,解之并檢驗后即可得出結(jié)論;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,所獲得的利潤為y元,則購進(jìn)乙種品牌空調(diào)(10-a)臺,根據(jù)總價=單價×數(shù)量結(jié)合總價不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進(jìn)數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)由(1)設(shè)甲種品牌的進(jìn)價為x元,則乙種品牌空調(diào)的進(jìn)價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調(diào)的進(jìn)價為(1+20%)×1500=1800(元).答:甲種品牌的進(jìn)價為1500元,乙種品牌空調(diào)的進(jìn)價為1800元;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,則購進(jìn)乙種品牌空調(diào)(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設(shè)利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當(dāng)a=7時,w最大,最大為12100元.答:當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量=總價÷單價列出關(guān)于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進(jìn)數(shù)量找出y關(guān)于a的函數(shù)關(guān)系式.23、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐標(biāo),根據(jù)頂點坐標(biāo)公式或配方法求出頂點B的坐標(biāo)、對稱軸直線,根據(jù)點A與點D關(guān)于對稱軸對稱,確定D點坐標(biāo).(2)根據(jù)點B、D的坐標(biāo)用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標(biāo).(3)根據(jù)點A、B的坐標(biāo)用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進(jìn)而求出交點N的坐標(biāo),得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當(dāng)x=0時,,∴A點的坐標(biāo)為(0,2)∵∴頂點B的坐標(biāo)為:(1,2-a),對稱軸為x=1,∵點A與點D關(guān)于對稱軸對稱∴D點的坐標(biāo)為:(2,2)(2)設(shè)直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當(dāng)y=0時,ax+2-2a=0,解得:x=∴M點的坐標(biāo)為:(3)由D(2,2)可得:直線OD解析式為:y=x設(shè)直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點的坐標(biāo)為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M(jìn),C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應(yīng)用二次函數(shù)與一次函數(shù)的圖象與性質(zhì),以及構(gòu)建直角三角形借助點的坐標(biāo)使用相等角的三角函數(shù)是解題的關(guān)鍵.24、⊙O的半徑為.【解析】

如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設(shè)⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構(gòu)建方程即可解決問題?!驹斀狻拷猓喝鐖D,連接OA.交BC于H.∵點A為的中點,∴OA⊥BD,BH=DH=4,∴∠AHC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論