北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第1頁(yè)
北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第2頁(yè)
北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第3頁(yè)
北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第4頁(yè)
北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第5頁(yè)
已閱讀5頁(yè),還剩41頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京回民學(xué)校八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案一、壓軸題1.某校七年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫出∠BQC與∠A的數(shù)量關(guān)系,并說(shuō)明理由;(4)如圖4,△ABC外角∠CBM、∠BCN的平分線交于點(diǎn)Q,∠A=64°,∠CBQ,∠BCQ的平分線交于點(diǎn)P,則∠BPC=゜,延長(zhǎng)BC至點(diǎn)E,∠ECQ的平分線與BP的延長(zhǎng)線相交于點(diǎn)R,則∠R=゜.2.如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱.(1)求點(diǎn)的坐標(biāo);(2)動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長(zhǎng)為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長(zhǎng).3.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個(gè)問(wèn)題:“如圖1,等腰直角三角形的三個(gè)頂點(diǎn)分別落在三條等距的平行線,,上,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng)度”.在研究這道題的解法和變式的過(guò)程中,同學(xué)們提出了很多想法:(1)小明說(shuō):我只需要過(guò)B、C向作垂線,就能利用全等三角形的知識(shí)求出AB的長(zhǎng).(2)小林說(shuō):“我們可以改變的形狀.如圖2,,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng).”(3)小謝說(shuō):“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個(gè)頂點(diǎn)分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長(zhǎng)、”請(qǐng)你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長(zhǎng)度.4.在中,,是直線上一點(diǎn),在直線上,且.(1)如圖1,當(dāng)D在上,在延長(zhǎng)線上時(shí),求證:;(2)如圖2,當(dāng)為等邊三角形時(shí),是的延長(zhǎng)線上一點(diǎn),在上時(shí),作,求證:;(3)在(2)的條件下,的平分線交于點(diǎn),連,過(guò)點(diǎn)作于點(diǎn),當(dāng),時(shí),求的長(zhǎng)度.5.如圖1,在等邊△ABC中,E、D兩點(diǎn)分別在邊AB、BC上,BE=CD,AD、CE相交于點(diǎn)F.(1)求∠AFE的度數(shù);(2)過(guò)點(diǎn)A作AH⊥CE于H,求證:2FH+FD=CE;(3)如圖2,延長(zhǎng)CE至點(diǎn)P,連接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以過(guò)點(diǎn)A作∠KAF=60°,AK交PC于點(diǎn)K,連接KB)6.問(wèn)題情景:數(shù)學(xué)課上,老師布置了這樣一道題目,如圖1,△ABC是等邊三角形,點(diǎn)D是BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線于點(diǎn)E.試探究AD與DE的數(shù)量關(guān)系.操作發(fā)現(xiàn):(1)小明同學(xué)過(guò)點(diǎn)D作DF∥AC交AB于F,通過(guò)構(gòu)造全等三角形經(jīng)過(guò)推理論證就可以解決問(wèn)題,請(qǐng)您按照小明同學(xué)的方法確定AD與DE的數(shù)量關(guān)系,并進(jìn)行證明.類比探究:(2)如圖2,當(dāng)點(diǎn)D是線段BC上任意一點(diǎn)(除B、C外),其他條件不變,試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.拓展應(yīng)用:(3)當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上,且滿足CD=BC,在圖3中補(bǔ)全圖形,直接判斷△ADE的形狀(不要求證明).7.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為_(kāi)_________;線段,之間的數(shù)量關(guān)系為_(kāi)_________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為_(kāi)_________;線段,,之間的數(shù)量關(guān)系為_(kāi)_________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過(guò)程中,與的面積和的最大值為_(kāi)_________.8.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.①當(dāng)α=70°時(shí),∠BDC度數(shù)=度(直接寫出結(jié)果);②∠BDC的度數(shù)為(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點(diǎn)F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).9.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點(diǎn)D,M為線段DB上一動(dòng)點(diǎn)(不包括端點(diǎn)),點(diǎn)N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長(zhǎng)線段AB到點(diǎn)P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數(shù)量關(guān)系時(shí)對(duì)于滿足條件的任意點(diǎn)M,AN=CP始終成立?(寫出探究過(guò)程)10.請(qǐng)按照研究問(wèn)題的步驟依次完成任務(wù).(問(wèn)題背景)(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說(shuō)理證明∠A+∠B=∠C+∠D.(簡(jiǎn)單應(yīng)用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問(wèn)題(1)中的結(jié)論)(問(wèn)題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間的數(shù)量關(guān)系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫出結(jié)論.11.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點(diǎn)且AE=CD,BD與EC交于點(diǎn)F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長(zhǎng)線上的點(diǎn)且AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,此時(shí)∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),點(diǎn)D,E分別在AC,OA的延長(zhǎng)線上,AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,若∠ACB=α,求∠BFE的大小.(用含α的代數(shù)式表示).12.問(wèn)題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC.請(qǐng)寫出DE、BD、CE三條線段的數(shù)量關(guān)系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(-2,0),點(diǎn)A的坐標(biāo)為(-6,3),請(qǐng)直接寫出B點(diǎn)的坐標(biāo).13.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫出比值.14.如圖,在中,,,點(diǎn)為內(nèi)一點(diǎn),且.(1)求證:;(2)若,為延長(zhǎng)線上的一點(diǎn),且.①求的度數(shù).②若點(diǎn)在上,且,請(qǐng)判斷、的數(shù)量關(guān)系,并說(shuō)明理由.③若點(diǎn)為直線上一點(diǎn),且為等腰,直接寫出的度數(shù).15.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問(wèn)題:(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸,等邊三角形有___________條對(duì)稱軸;(2)觀察下列一組凸多邊形(實(shí)線畫出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫出所得的凸五邊形;(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;(4)請(qǐng)你畫一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸.16.(1)發(fā)現(xiàn):如圖1,的內(nèi)角的平分線和外角的平分線相交于點(diǎn)。①當(dāng)時(shí),則②當(dāng)時(shí),求的度數(shù)(用含的代數(shù)式表示)﹔(2)應(yīng)用:如圖2,直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),延長(zhǎng)至,已知的角平分線與的角平分線所在的直線相交于,在中,如果一個(gè)角是另一個(gè)角的倍,請(qǐng)直接寫出的度數(shù).17.如圖,在中,為的中點(diǎn),,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是.(1)在運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),求出的值;(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)時(shí),求出的值;(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.18.閱讀材料并完成習(xí)題:在數(shù)學(xué)中,我們會(huì)用“截長(zhǎng)補(bǔ)短”的方法來(lái)構(gòu)造全等三角形解決問(wèn)題.請(qǐng)看這個(gè)例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長(zhǎng)線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質(zhì)得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉(zhuǎn)化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請(qǐng)你用上面學(xué)到的方法完成下面的習(xí)題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.19.探究發(fā)現(xiàn):如圖①,在中,內(nèi)角的平分線與外角的平分線相交于點(diǎn).(1)若,則;若,則;(2)由此猜想:與的關(guān)系為(不必說(shuō)明理由).拓展延伸:如圖②,四邊形的內(nèi)角與外角的平分線相交于點(diǎn),.(3)若,,求的度數(shù),由此猜想與,之間的關(guān)系,并說(shuō)明理由.20.已知:中,過(guò)B點(diǎn)作BE⊥AD,.(1)如圖1,點(diǎn)在的延長(zhǎng)線上,連,作于,交于點(diǎn).求證:;(2)如圖2,點(diǎn)在線段上,連,過(guò)作,且,連交于,連,問(wèn)與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點(diǎn)在CB延長(zhǎng)線上,且,連接、的延長(zhǎng)線交于點(diǎn),若,請(qǐng)直接寫出的值.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)122°;(2);(3);(4)119,29;【解析】【分析】(1)根據(jù)三角形的內(nèi)角和角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用與表示出,再利用與表示出,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出與,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解;(4)根據(jù)(1),(3)的結(jié)論可以得出∠BPC的度數(shù);根據(jù)(2)的結(jié)論可以得到∠R的度數(shù).【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)如圖2示,和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論.(4)由(3)可知,,再根據(jù)(1),可得;由(2)可得:;故答案為:119,29.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.2.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對(duì)稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點(diǎn)的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點(diǎn)、關(guān)于軸對(duì)稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點(diǎn)C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點(diǎn)到的距離為,∴,∴,∴,延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點(diǎn)睛】本題是三角形綜合題,涉及的知識(shí)有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運(yùn)用面積法求線段的長(zhǎng)是解本題的關(guān)鍵.3.(1);(2);(3)【解析】【分析】(1)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于點(diǎn)P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過(guò)△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長(zhǎng);(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過(guò)B作l3的垂線,交l3于點(diǎn)P,過(guò)A作l3的垂線,交l3于點(diǎn)Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長(zhǎng),即為AB.【詳解】解:(1)如圖,分別過(guò)點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過(guò)B作l3的垂線,交于點(diǎn)P,過(guò)A作l3的垂線,交于點(diǎn)Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.4.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過(guò)E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.5.(1)∠AFE=60°;(2)見(jiàn)解析;(3)【解析】【分析】(1)通過(guò)證明得到對(duì)應(yīng)角相等,等量代換推導(dǎo)出;(2)由(1)得到,則在中利用30°所對(duì)的直角邊等于斜邊的一半,等量代換可得;(3)通過(guò)在PF上取一點(diǎn)K使得KF=AF,作輔助線證明和全等,利用對(duì)應(yīng)邊相等,等量代換得到比值.(通過(guò)將順時(shí)針旋轉(zhuǎn)60°也是一種思路.)【詳解】(1)解:如圖1中.∵為等邊三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)證明:如圖1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一點(diǎn)K使得KF=AF,連接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK為等邊三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【點(diǎn)睛】掌握等邊三角形、直角三角形的性質(zhì),及三角形全等的判定通過(guò)一定等量代換為本題的關(guān)鍵.6.(1)AD=DE,見(jiàn)解析;(2)AD=DE,見(jiàn)解析;(3)見(jiàn)解析,△ADE是等邊三角形,【解析】【分析】(1)根據(jù)題意,通過(guò)平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;(2)根據(jù)題意,通過(guò)平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;(3)根據(jù)垂直平分線的性質(zhì)及等邊三角形的判定定理進(jìn)行證明即可.【詳解】(1)如下圖,數(shù)量關(guān)系:AD=DE.證明:∵是等邊三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等邊三角形,∴DF=BD∵點(diǎn)D是BC的中點(diǎn)∴BD=CD∴DF=CD∵CE是等邊的外角平分線∴∵是等邊三角形,點(diǎn)D是BC的中點(diǎn)∴AD⊥BC∴∵∴在與中∴∴AD=DE;(2)結(jié)論:AD=DE.證明:如下圖,過(guò)點(diǎn)D作DF∥AC,交AB于F∵是等邊三角形∴AB=BC,∵DF∥AC∴∴∴是等邊三角形,∴BF=BD∴AF=DC∵CE是等邊的外角平分線∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在與中∴∴AD=DE;(3)如下圖,是等邊三角形.證明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等邊三角形.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì)及判定,三角形全等的判定及性質(zhì),平行線的性質(zhì),垂直平分線的性質(zhì)等相關(guān)內(nèi)容,熟練掌握三角形綜合解決方法是解決本題的關(guān)鍵.7.(1)=;(2)證明見(jiàn)解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過(guò)程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過(guò)程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過(guò)程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過(guò)程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過(guò)程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.8.(1)(1)①125°;②,(2);(3)【解析】【分析】(1)①由三角形內(nèi)角和定理易得∠ABC+∠ACB=110°,然后根據(jù)角平分線的定義,結(jié)合三角形內(nèi)角和定理可求∠BDC;②由三角形內(nèi)角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推導(dǎo)方法即可求解;(2)由三角形外角性質(zhì)得,然后結(jié)合角平分線的定義求解;(3)由折疊的對(duì)稱性得,結(jié)合(1)②的結(jié)論可得答案.【詳解】解:(1)①∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣70°)=125°②∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分別為125°,90°+α.(2)∵BF和CF分別平分∠ABC和∠ACE∴,,∴=即.(3)由軸對(duì)稱性質(zhì)知:,由(1)②可得,∴.【點(diǎn)睛】本題考查三角形中與角平分線有關(guān)的角度計(jì)算,熟練掌握三角形內(nèi)角和定理,以及三角形的外角性質(zhì)是解題的關(guān)鍵.9.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,證明見(jiàn)解析.【解析】【分析】(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過(guò)點(diǎn)N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過(guò)點(diǎn)N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過(guò)點(diǎn)N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當(dāng)AC=2BD時(shí),對(duì)于滿足條件的任意點(diǎn)N,AN=CP始終成立,理由如下:過(guò)點(diǎn)N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點(diǎn)睛】本題三角形綜合題,考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,三角形面積公式等知識(shí),添加恰當(dāng)輔助線構(gòu)造全等三角形是本題的關(guān)鍵.10.(1)見(jiàn)解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理即可證明;(2)如圖2,根據(jù)角平分線的性質(zhì)得到∠1=∠2,∠3=∠4,列方程組即可得到結(jié)論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問(wèn)題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結(jié)合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結(jié)合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結(jié)論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點(diǎn)睛】本題考查三角形內(nèi)角和,三角形的外角的性質(zhì)、多邊形的內(nèi)角和等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用方程組的思想思考問(wèn)題,屬于中考??碱}型.11.(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點(diǎn)睛】本題綜合考查了三角形全等以及三角形外角和定理.12.(1)證明見(jiàn)解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(2)根據(jù)三角形內(nèi)角和定理、平角的定義證明∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(3)根據(jù)△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.【詳解】(1)證明:∵BD⊥直線m,CE⊥直線m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:數(shù)量關(guān)系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如圖,作AE⊥x軸于E,BF⊥x軸于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴點(diǎn)B的坐標(biāo)為B(1,4).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.13.(1)互相平行;(2)35,20;(3)見(jiàn)解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.14.(1)證明見(jiàn)解析;(2)①;②,理由見(jiàn)解析;③7.5°或15°或82.5°或150°【解析】【分析】(1)利用線段的垂直平分線的性質(zhì)即可證明;(2)①利用SSS證得△ADC≌△BDC,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解題;②連接MC,易證△MCD為等邊三角形,即可證明△BDC≌△EMC即可解題;③分EN=EC、EN=CN、CE=CN三種情形討論,畫出圖形,利用等腰三角形的性質(zhì)即可求解.【詳解】(1)∵CB=CA,DB=DA,∴CD垂直平分線段AB,∴CD⊥AB;(2)①在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD=∠BCA=45°,∠CAD=∠CBD=15°,∴∠BDC=180-45°-15°=120°;②結(jié)論:ME=BD,理由:連接MC,∵,,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM,∠CDE=60°,∴△MCD為等邊三角形,∴CM=CD,∵EC=CA=CB,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC和△EMC中,,∴△BDC≌△EMC(AAS),∴ME=BD;③當(dāng)EN=EC時(shí),∠=7.5°或∠==82.5°;當(dāng)EN=CN時(shí),∠==150°;當(dāng)CE=CN時(shí),點(diǎn)N與點(diǎn)A重合,∠CNE=15°,所以∠CNE的度數(shù)為7.5°或15°或82.5°或150°.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.15.(1)1,2,3;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析;(4)答案見(jiàn)解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫圖即可;(3)長(zhǎng)方形具有兩條對(duì)稱軸,在長(zhǎng)方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對(duì)稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對(duì)稱軸,非正方形的長(zhǎng)方形有2條對(duì)稱軸,等邊三角形有3條對(duì)稱軸,故答案為1,2,3;(2)恰好有1條對(duì)稱軸的凸五邊形如圖中所示.(3)恰好有2條對(duì)稱軸的凸六邊形如圖所示.(4)恰好有3條對(duì)稱軸的凸六邊形如圖所示.16.(1)①25°;②;(2).【解析】【分析】(1)①利用外角和性質(zhì)∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,再利用角平分線的定義進(jìn)行等量代換即可;②與①同理可得;(2)根據(jù)題意分情況進(jìn)行討論,用到(1)的結(jié)論計(jì)算即可【詳解】(1)①∠ACD=∠A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論