貴州省中考數(shù)學(xué)模擬試卷含答案_第1頁
貴州省中考數(shù)學(xué)模擬試卷含答案_第2頁
貴州省中考數(shù)學(xué)模擬試卷含答案_第3頁
貴州省中考數(shù)學(xué)模擬試卷含答案_第4頁
貴州省中考數(shù)學(xué)模擬試卷含答案_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省中考數(shù)學(xué)模擬試卷含答案

一、選擇題(本題共12小題,每小題3分,共36分在每小題給出的四個選項

中,只有一項符合題目要求請用2b鉛筆把答題卡上對應(yīng)題目的答案標號涂黑、

涂滿)

1.(3.00分)如果電梯,升5層記為十5.那么電梯下降2層應(yīng)記為()

A.+2B.-2C.+5D.-5

2.(3.00分)觀察下列幾何圖形,既是軸對稱圖形又是中心對稱圖形的是()

億用科學(xué)記數(shù)法表示為()

A.532X108B.5.32X102C.5.32X106D.5.32X1O10

4.(3.00分)下列運算正確的是()

A.(-a2)3=-a5B.a3*a5=a15C.(-a2b3)2=a4b6D.3a2-2a2=l

5.(3.00分)已知a〃b,某學(xué)生將一直角三角板放置如圖所示,如果/1:35。,

那么N2的度數(shù)為()

A.35°B.55°C.56°D.65°

6.(3.00分)貴州省第十屆運動會將于2018年8月8日在遵義市奧體中心開幕,

某校有2名射擊隊員在比賽中的平均成績均為9環(huán),如果教練要從中選1名成績

穩(wěn)定的隊員參加比賽,那么還應(yīng)考慮這2名隊員選拔成績的()

A.方差B.中位數(shù)C.眾數(shù)D.最高環(huán)數(shù)

7.(3.00分)如圖,直線y=kx+3經(jīng)過點(2,0),則關(guān)于x的不等式kx+3>0的

解集是()

A.x>2B.x<2C.x22D.xW2

8.(3.00分)若要用一個底面直徑為10,高為12的實心圓柱體,制作一個底面

和高分別與圓柱底面半徑和高相同的圓錐,則該圓錐的側(cè)面積為()

A.60nB.65nC.78KD.120n

9.0.00分)已知xi,X2是關(guān)于x的方程x?+bx-3=0的兩根,且滿足xi+x2-3XIX2=5,

那么b的值為()

A.4B.-4C.3D.-3

10.(3.00分)如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF〃BC,

分別交AB,CD于E、F,連接PB、PD.若AE=2,PF=8.則圖中陰影部分的面積

11.(3.00分)如圖,直角三角形的直角頂點在坐標原點,ZOAB=30°,若點A

x

12.(3.00分)如圖,四邊形ABCD中,AD〃BC,ZABC=90°,AB=5,BC=10,連

接AC、BD,以BD為直徑的圓交AC于點E.若DE=3,則AD的長為()

A.5B.4C.3^D.2遍

二、填空題(本大題共6小題,每小題4分,共24分.答題請用黑色曼水筆或黑

色簽字筆直接谷在答題卡的相應(yīng)位量上)

13.(4.00分)計算1的結(jié)果是.

14.(4.00分)如圖,4ABC中.點D在BC邊上,BD=AD=AC,E為CD的中點.若

ZCAE=16°,則NB為度.

15.(4.00分)現(xiàn)有古代數(shù)學(xué)問題:“今有牛五羊二值金八兩;牛二羊五值金六兩,

則一牛一羊值金兩.

16.(4.00分)每一層三角形的個數(shù)與層數(shù)的關(guān)系如圖所示,則第2018層的三角

形個數(shù)為.

17.(4.00分)如圖拋物線y=x?+2x-3與x軸交于A,B兩點,與y軸交于點C,

點P是拋物線對稱軸上任意一點,若點D、E、F分別是BC、BP、PC的中點,連

接DE,DF,貝DE+DF的最小值為.

/D

22.(10.00分)為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團課程,為了

解部分社團課程在學(xué)生中最受歡迎的程度,學(xué)校隨機抽取七年級部分學(xué)生進行調(diào)

查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選

出你喜歡的課程(被調(diào)查者限選一項),并將調(diào)查結(jié)果繪制成兩個不完整的統(tǒng)計

圖,如圖所示,根據(jù)以上信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為人,扇形統(tǒng)計圖中A部分的圓心角是

度.

(2)請補全條形統(tǒng)計圖.

(3)根據(jù)本次調(diào)查,該校七年級840名學(xué)生中,估計最喜歡〃科學(xué)探究〃的學(xué)生

人數(shù)為多少?

23.(10.00分)某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤

的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向

A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時

轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品

享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相

同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8

折優(yōu)惠的概率.

24.(10.00分)如圖,正方形ABCD的對角線交于點0,點E、F分別在AB、BC

上(AE<BE),且NEOF=90。,OE、DA的延長線交于點M,OF、AB的延長線交

于點N,連接MN.

(1)求證:0M=0N.

(2)若正方形ABCD的邊長為4,E為0M的中點,求MN的長.

25.(12.00分)在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,

售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天

的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)…34.83229.628...

售價x(元/千克)…22.62425.226...

(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

26.(12.00分)如圖,AB是半圓。的直徑,C是AB延長線上的點,AC的垂直

平分線交半圓于點D,交AC于點E,連接DA,DC.己知半圓0的半徑為3,BC=2.

(1)求AD的長.

(2)點P是線段AC上一動點,連接DP,作NDPF=NDAC,PF交線段CD于點F.當

△DPF為等腰三角形時,求AP的長.

___D

P0EB

27.(14.00分)在平面直角坐標系中,二次函數(shù)丫=2乂2+赳(:的圖象經(jīng)過點C(0,

2)和點D(4,-2).點E是直線y=-^x+2與二次函數(shù)圖象在第一象限內(nèi)的交

3

點.

(1)求二次函數(shù)的解析式及點E的坐標.

(2)如圖①,若點M是二次函數(shù)圖象上的點,且在直線CE的上方,連接VIC,

OE,ME.求四邊形COEM面積的最大值及此時點M的坐標.

參考答案與試題解析

一、選擇題(本題共12小題,每小題3分,共36分在每小題給出的四個選項

中,只有一項符合題目要求請用2b鉛筆把答題卡上對應(yīng)題目的答案標號涂黑、

涂滿)

1.(3.00分)如果電梯上升5層記為+5.那么電梯下降2層應(yīng)記為()

A.+2B.-2C.+5D.-5

【分析】直接利用電梯上升5層記為+5,則電梯下降記為負數(shù),進而得出答案.

【解答】解:???電梯上升5層記為+5,

???電梯下降2層應(yīng)記為:

故選:B.

2.(3.00分)觀察下列幾何圖形,既是軸對稱圖形又是中心對稱圖形的是()

【分析】根據(jù)等腰三角形,平行四邊形、矩形、圓的性質(zhì)即可判斷;

【解答】解:???等腰三角形是軸對稱圖形,平行四邊形是中心對稱圖形,半圓是

軸對稱圖形,矩形既是軸對稱圖形又是中心對稱圖形;

故選:C.

3.(3.00分)2018年第二季度,遵義市全市生產(chǎn)總值約為532億元,將數(shù)532

億用科學(xué)記數(shù)法表示為()

A.532X108B.5.32X102C.5.32X106D.5.32X1O10

【分析】科學(xué)記數(shù)法的表示形式為aX10n的形式,其中1W|a|<10,n為整數(shù).確

定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點

移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值VI時,n

是負數(shù).

【解答】解:將數(shù)532億用科學(xué)記數(shù)法表示為5.32X10】。.

故選:D.

4.(3.00分)下列運算正確的是()

A.(-a2)3=-a5B.a3*a5=a15C.(-a2b3)2=a4b6D.3a2-2a2=l

【分析】直接利用積的乘方運算法則以及同底數(shù)嘉的乘除運算法則、合并同類項

法則分別計算得出答案.

【解答】解:A、(??。?二-a6,故此選項錯誤;

B、a3?a5=a8,故此選項錯誤;

C、(-a2h3)2=a4b6,正確:

D、3a2-2a2=a2,故此選項錯誤;

故選:C.

5.(3.00分)已知a〃b,某學(xué)生將一直角三角板放置如圖所示,如果/1二35。,

那么N2的度數(shù)為()

A.35°B.55°C.56°D.65°

【分析】利用兩直線平行同位角相等得到一對角相等,再由對頂角相等及直角三

角形兩銳角互余求出所求角度數(shù)即可.

【解答】解:,??a〃b,

AZ3=Z4,

VZ3=Z1,

/.Z1=Z4,

VZ5+Z4=90°,且N5=N2,

AZl+Z2=90°,

VZ1=35°,

???N2=55°,

故選:B.

6.(3.00分)貴州省第十屆運動會將于2018年8月8日在遵義市奧體中心開幕,

某校有2名射擊隊員在比賽中的平均成績均為9環(huán),如果教練要從中選1名成績

穩(wěn)定的隊員參加比賽,那么還應(yīng)考慮這2名隊員選拔成績的()

A.方差B.中位數(shù)C.眾數(shù)D.最高環(huán)數(shù)

【分析】根據(jù)方差的意義得出即可.

【解答】解:如果教練要從中選1名成績穩(wěn)定的隊員參加比賽,那么還應(yīng)考慮這

2名隊員選拔成績的方差,

故選:A.

7.(3.00分)如圖,直線y=kx+3經(jīng)過點(2,0),則關(guān)于x的不等式kx+3>0的

解集是()

A.x>2B.x<2C.x^2D.xW2

【分析】先根據(jù)一次函數(shù)圖象上點的坐標特征得到2k+3=0,解得匕-1.5,然后

解不等式-1.5x+3>0即可.

【解答】解:???直線y=kx+3經(jīng)過點P(2,0)

...2k+3=0,解得k=-1.5,

,直線解析式為y=-1.5x+3,

解不等式-1.5x+3>0,得xV2,

即關(guān)于x的不等式kx+3>0的解集為x<2,

故選:B.

8.(3.00分)若要用一個底面直徑為10,高為12的實心圓柱體,制作一個底面

和高分別與圓柱底面半徑和高相同的圓錐,則該圓錐的側(cè)面積為()

A.60nB.65HC.78KD.120n

【分析】直接得出圓錐的母線長,再利用圓錐側(cè)面及求法得出答案.

【解答】解:由題意可得:圓錐的底面半徑為5,母線長為:^2^2=13,

該圓錐的側(cè)面積為:71X5X13=6血.

故選:B.

2

9.(3.00分)已知xi,x2是關(guān)于x的方程x+bx-3=0的兩根,且滿足xi+x2-3xix2=5,

那么b的值為()

A.4B.-4C.3D.-3

【分析】直接利用根與系數(shù)的關(guān)系得出x1+x2=-b,x1X2=-3,進而求出答案.

【解答】解:???xi,X2是關(guān)于x的方程x2+bx-3=0的兩根,

Xl+X2=-b,

X1X2=-3,

則X1+X2-3X1X2=5,

-b-3X(-3)=5,

解得:b=4.

故選:A.

10.(3.00分)如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF〃BC,

分別交AB,CD于E、F,連接PB、PD.若AE=2,PF=8.則圖中陰影部分的面積

為()

【分析】想辦法證明S"EB=SgFD解答即可.

【解答】解:作PM_LAD于M,交BC于N.

則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,

SAADC=SAABC?SAAMP=SAAEP?SAPBE=SAPBN?SAPFD;S&PDM,SAPFC=SAPCN?

**?SADFP=S△PBE=-2X8=8,

2

**.S陰=8+8=16,

故選:C.

11.(3.00分)如圖,直角三角形的直角頂點在坐標原點,ZOAB=30°,若點A

在反比例函數(shù)y=2(x>0)的圖象上,則經(jīng)過點B的反比例函數(shù)解析式為()

【分析】直接利用相似三角形的判定與性質(zhì)得出安江工,進而得出兄AOD=2,

SAA0D3

即可得出答案.

【解答】解:過點B作BCJ_x軸于點C,過點A作AD_l_x軸于點D,

.,ZBOA=90°,

.\ZB0C+ZA0D=90o,

VZAOD+ZOAD=90°,

AZBOC=ZOAD,

XVZBCO=ZADO=90°,

/.△BCO^AODA,

.,.以tan30°ai,

AO3

?SABCO_1

??,

SAA0D3

vl.XADXDO=lxy=3,

;?SABCO=—XBCXCO=1SAAOD=1,

23

??SAAOD=2,

???經(jīng)過點B的反比例函數(shù)圖象在第二象限,

故反比例函數(shù)解析式為:y=-2.

x

故選:C.

12.(3.00分)如圖,四邊形ABCD中,AD〃BC,ZABC=90°,AB=5,BC=10,連

接AC、BD,以BD為直徑的圓交AC丁點E.若DE=3,則AD的長為()

A.5B.4C.3^D.2遍

【分析】先求出AC,進而判斷出△ADFs^CAB,即可設(shè)DF=x,AD=0,利用

勾股定理求出BD,再判斷出△DEFsaDBA,得出比例式建立方程即可得出結(jié)論.

【解答】解:如圖,在RtZXABC中,AB=5,BC=10,

.,?AC=5巡

過點D作DF_LAC于F,

/.ZAFD=ZCBA,

VAD//BC,

AZDAF=ZACB,

/.△ADF^ACAB,

.DFAD

?DFAD

設(shè)DF二x,則AD二倔,

在RtZXABD中,BDAB2+AD*45x2+25'

VZDEF=ZDBA,ZDFE=ZDAB=90°,

AADEF^ADBA,

.DEDF

??麗而

.3_x

V5X2+250

Ax=2,

/.AD=V5X=2^/5?

二、填空題(本大題共6小題,每小題4分,共24分.答題請用黑色曼水筆或黑

色簽字筆直接谷在答題卡的相應(yīng)位量上)

13.(4.00分)計算5-1的結(jié)果是2.

【分析】首先計算9的算術(shù)平方根,再算減法即可.

【解答】解:原式=3-1=2,

故答案為:2.

14.(4.00分)如圖,4ABC中.點D在BC邊上,BD=AD=AC,E為CD的中點.若

ZCAE=16°,則NB為37度.

【分析】先判斷出NAEC=90。,進而求出NADC=NC=74。,最后用等腰三角形的外

角等于底角的2倍即瓦?得出結(jié)論.

【解答】解:,??AD=AC,點E是CD中點,

,AE_LCD,

AZAEC=90°,

AZC=90°-ZCAE=74C,

VAD=AC,

AZADC=ZC=74°,

VAD=BD,

.*.2ZB=ZADC=74°,

/.ZB=37°,

故答案為37。.

15.(4.00分)現(xiàn)有古代數(shù)學(xué)問題:“今有牛五羊二值金八兩;牛二羊五值金六兩,

則一牛一羊值金二兩.

【分析】設(shè)一牛值金x兩,一羊值金y兩,根據(jù)〃牛五羊二值金八兩;牛二羊五

值金六兩〃,即可得出關(guān)于x、y的二元一次方程組,兩方程相加除以7,即可求

出一牛一羊的價值.

【解答】解:設(shè)一牛值金x兩,一羊值金y兩,

根據(jù)題意得:儼+2尸嗎

12x+5y=6②

(①+②)4-7,得:x+y=2.

故答案為:二

16.(4.00分)每一層三角形的個數(shù)與層數(shù)的關(guān)系如圖所示,則第2018層的三角

形個數(shù)為4035.

第1層

第2層

第3層

第4層

第5層

【分析】根據(jù)題意和圖形可以發(fā)現(xiàn)隨著層數(shù)的變化三角形個數(shù)的變化規(guī)律,從而

可以解答本題.

【解答】解:由圖可得,

第1層三角形的個數(shù)為:1,

第2層二角形的個數(shù)為:3,

第3層三角形的個數(shù)為:5,

第4層三角形的個數(shù)為:7,

第5層三角形的個數(shù)為:9,

第n層的三角形的個數(shù)為:2n-l,

???當n=2018時,三角形的個數(shù)為:2X2018-1=4035,

故答案為:4035.

17.(4.00分)如圖拋物線y=x2+2x-3與x軸交于A,B兩點,與y軸交于點C,

點P是拋物線對稱軸上任意一點,若點D、E、F分別是BC、BP、PC的中點,連

372

接DE,DF,則DE+DF的最小值為

【分析】直接利用軸對稱求最短路線的方法得出P點位置,再求出AO,CO的長,

進而利用勾股定理得出答案.

【解答】解:連接AC,交對稱軸于點P,

則此時PC+PB最小,

???點D、E、F分別是BC、BP、PC的中點,

.\DE=-lpC,DF=1PB,

22

???拋物線V=x2+2x-3與x軸交于A,B兩點,與丫軸交于點C,

.'.0=x2+2x-3

解得:Xi=-3,X2=l,

x=0時,y=3,

故C0=3,

貝|JAO=3,可得:AC=PB+PC=36,

故DE+DF的最小值為:之色.

故答案為:迎

18.(4.00分)如圖,在菱形ABCD中,ZABC=120°,將菱形折疊,使點A恰好

落在對角線BD上的點G處(不與B、D重會〉,折痕為EF,若DG=2,BG=6,則

BE的長為2.8.

EB

【分析】作EHJ_BD于H,根據(jù)折疊的性質(zhì)得到EG=EA,根據(jù)菱形的性質(zhì)、等邊

三角形的判定定理得到4ABD為等邊三角形,得到AB二BD,根據(jù)勾股定理列出方

程,解方程即可.

【解答】解:作EH_LBD于H,

由折疊的性質(zhì)可知,EG=EA,

由題意得,BD=DG+BG=8,

二?四邊形ABCD是菱形,

AAD=AB,ZABD=ZCBD=-LZABC=60°,

2

?二△ABD為等邊三角形,

AAB=BD=8,

設(shè)BE=x,則EG=AE=8-x,

在RtaEHB中,BH=ix,EH二叵,

22

在RtZ^EHG中,EG2=EH2+GH2,即(8-x)2=(?)2+(6-x)2,

2

解得,x=2.8,即BE=2.8,

三、解答題(本題共9小題,共90分,答題時請用黑色簽字筆成者水筆書寫在

答題卡相應(yīng)的位置上,解答時應(yīng)寫出必要的文字說明,證明過程與演算步驟)

19.(6.00分)2一】十|1-遍十(V5-2)0-8560。

【分析】直接利用負指數(shù)幕的性質(zhì)以及零指數(shù)箱的性質(zhì)以及特殊角的三角函數(shù)

值、絕對值的性質(zhì)分別化簡得出答案.

【解答】解:原式二工+2點-1+1-1

22

=2量.

2

20.(8.00分)化簡分式(:&+」)小孝并在2,3,4,5這四個數(shù)

a2-6a+93-aa2-9

中取一個合適的數(shù)作為a的值代入求值.

【分析】先根據(jù)分式混合運算順序和運算法則化簡原式,再選取是分式有意義的

a的值代入計算可得.

【解答】解:原式=[且g2-2]+/

2

(a-3)a-3(a+3)(a-3)

()

=a-2.(/+3)(a-3)

a-3a-3a-2

-a-2.(a+3)(a-3)

^2

二a+3,

??'a#-3、2、3,

/.a=4或a=5.

則a=4時,原式=7.

21.(8.00分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,

吊臂AB與水平線的夾角為64。,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,

參考數(shù)據(jù)sin64°弋0.90.cos640弋0.44,tan64°^2.05)

(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為11.4m.

(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高

度是多少?(吊鉤的長度與貨物的高度忽略不計)

【分析】(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可;

(2)過點D作DHL地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.

【解答】解:(1)在RtZXABC中,

VZBAC=64°,AC=5m,

故答案為:11.4;

(2)過點D作DH_L地面于H,交水平線于點E,

在RtAADE中,

VAD=20m,ZDAE=64\EH=1.5m,

/.DE=sin64°XAD^20X0.9^18(m),

即DH=DE+EH=18+1.5=19.5(m),

答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度

是19.5m.

22.(10.00分)為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團課程,為了

解部分社團課程在學(xué)生中最受歡迎的程度,學(xué)校隨機抽取七年級部分學(xué)生進行調(diào)

查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選

出你喜歡的課程(被調(diào)查者限選一項),并將調(diào)查結(jié)果繪制成兩個不完整的統(tǒng)計

圖,如圖所示,根據(jù)以上信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為_1§2_人,扇形統(tǒng)計圖中A部分的圓心角是3_度.

(2)請補全條形統(tǒng)計圖.

(3)根據(jù)本次調(diào)查,該校七年級840名學(xué)生中,估計最喜歡〃科學(xué)探究〃的學(xué)生

人數(shù)為多少?

該項人數(shù)

【分析】(1)根據(jù):該項所占的百分比二X100%,圓心角二該項的百分

總?cè)藬?shù)

比X360。.兩圖給出了D的數(shù)據(jù),代入即可算出調(diào)查的總?cè)藬?shù),然后再算出A

的圓心角;

(2)根據(jù)條形圖中數(shù)據(jù)和調(diào)查總?cè)藬?shù),先計算出喜歡〃科學(xué)探究〃的人數(shù),再補

全條形圖;

(3)根據(jù):喜歡某項人數(shù);總?cè)藬?shù)X該項所占的百分比,計算即得.

【解答】解:(1)由條形圖、扇形圖知:喜歡趣味數(shù)學(xué)的有48人,占調(diào)查總?cè)?/p>

數(shù)的30%.

所以調(diào)查總?cè)藬?shù):484-30%=160(人)

圖中A部分的圓心角為:且-x360°=54。

160

故答案為:160,54

(2)喜歡"科學(xué)探究〃的人數(shù):160-24-32-48

=56(人)

補全如圖所示

(3)840X-^294(名)

160

答:該校七年級840名學(xué)生中,估計最喜歡“科學(xué)探究〃的學(xué)生人數(shù)為294名.

56

48

40

32

24

186

23.(10.00分)某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤

的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向

A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時

轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品

享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相

同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為1;

-_4-

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8

【分析】(1)由轉(zhuǎn)動轉(zhuǎn)盤甲共有四種等可能結(jié)果,其中指針指向A區(qū)域只有1

種情況,利用概率公式計算可得;

(2)畫樹狀圖得出所有等可能結(jié)果,從中確定指針指向每個區(qū)域的字母相司的

結(jié)果數(shù),利用概率公式計算可得.

【解答】解:(1)若選擇方式一,轉(zhuǎn)動轉(zhuǎn)盤甲一次共有四種等可能結(jié)果,其中指

針指向A區(qū)域只有1種情況,

???享受9折優(yōu)惠的概率為工,

4

故答案為:1;

4

(2)畫樹狀圖如下:

ABCD

AAAA

ABEABEABEABE

由樹狀圖可知共有12種等可能結(jié)果,其中指針指向每個區(qū)域的字母相同的有2

種結(jié)果,

所以指針指向每個區(qū)域的字母相同的概率,即顧客享受8折優(yōu)惠的概率為

126

24.(10.00分)如圖,正方形ABCD的對角線交于點0,點E、F分別在AB、BC

上(AE<BE),且NEOF=90°,OE、DA的延長線交于點M,OF、AB的延長線交

于點N,連接MN.

(1)求證:OM=ON.

(2)若正方形ABCD的邊長為4,E為0M的中點,求MN的長.

【分析】(1)證△OAM0AOBN即可得;

(2)作OH_LAD,由正方形的邊長為4且E為OM的中點知OH=HA=2、HM=4,

再根據(jù)勾股定理得OM=2遍,由直角三角形性質(zhì)知MN=V2OM.

【解答】解:(1)???四邊形ABCD是正方形,

AOA=OB,ZDAO=45°,ZOBA=45°,

AZOAM=ZOBN=135°,

VZEOF=90°,ZAOB=90°,

AZAOM=ZBON,

/.△OAM^AOBN(ASA),

AOM=ON;

(2)如圖,過點O作OH_LAD于點H,

???正方形的邊長為4,

AOH=HA=2,

???E為OM的中點,

/.HM=4,

則。乂:五+產(chǎn)旄,

AMN=V2OM=2V10.

25.(12.00分)在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,

售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天

的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)…34.83229.628???

售價x(元/千克)???22.62425.226???

(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

【分析】(1)根據(jù)表格內(nèi)的數(shù)據(jù),利用待定系數(shù)法可求出y與x之間的函數(shù)關(guān)系

式,再代入x=23.5即可求出結(jié)論;

(2)根據(jù)總利潤:每千克利潤X銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解

之取其較小值即可得出結(jié)論.

【解答】解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為片kx+b,

將(22.6,34.8)、(24,32)代入y=kx+b,

'22?6k+b=34?8,解得"k二-2,

24k+b=32lb=80

Ay與x之間的函數(shù)關(guān)系式為y=-2x+80.

當x=23.5時,y=-2x+80=33.

答:當天該水果的銷售量為33千克.

(2)根據(jù)題意得:(x-20)(-2x+80)=150,

解得:

xi=35,X2=25.

:20WxW32,

Ax=25.

答:如果某天銷售這種水果獲利150元,那么該天水果的售價為25元.

26.(12.00分)如圖,AB是半圓。的直徑,C是AB延長線上的點,AC的垂直

平分線交半圓于點D,交AC于點E,連接DA,DC.已知半圓O的半徑為3,BC=2.

(1)求AD的長.

(2)點P是線段AC上一動點,連接DP,作NDPF二NDAC,PF交線段CD于點F.當

△DPF為等腰三角形時,求AP的長.

D

APOEBC

【分析】(1)先求出AC,進而求出AE=4,再用勾股定理求出DE即可得出絹論;

(2)分三種情況,利用相似三角形得出比例式,即可得出結(jié)論.

【解答】解:(1)如圖1,連接OD,?.?0A=0D=3,BC=2,

/.AC=8,

vDESAC的垂直平分線,

.-.AE=1AC=4,

2

AOE=AE-OA=1,

4

在RMODE4,DE=A/OD2_OE2=272;

在R3ADE中,AD=^AE2+DE2=2V6;

(2)當DP=DF時,如圖2,

點P與A重合,F(xiàn)與C重合,則AP=O;

當DP二PF時,如圖4,AZCDP=ZPFD,

???DE是AC的垂直平分線,ZDPF=ZDAC,

.\ZDPF=ZC,

VZPDF=ZCDP,

.,.△PDF^ACDP,

AZDFP=ZDPC,

/.ZCDP=ZCPD,

/.CP=CD,

.\AP=AC-CP=AC-CD=AC-AD=8-2泥;

當PF=DF時,如圖3,

AZFDP=ZFPD,

VZDPF=ZDAC=ZC,

AADAC^APDC,

?PCCD

■■“--9

CD-AC

.8-AP.2粕

2娓8

AAP=5,

即:當ADPF是等腰三角形時,AP的長為0或5或8-2遍.

圖1

27.(14.00分)在平面直角坐標系中,二次函數(shù)支ax2+2(+c的圖象經(jīng)過點C(0,

3

2)和點D(4,-2).點E是直線y二-Lx+2與二次函數(shù)圖象在第一象限內(nèi)的交

3

點.

(1)求二次函數(shù)的解析式及點E的坐標.

(2)如圖①,若點M是二次函數(shù)圖象上的點,且在直線CE的上方,連接MC,

OE,ME.求四邊形COEM面積的最大值及此時點M的坐標.

(3)如圖②,經(jīng)過A、B、C三點的圓交y軸于點F,求點F的坐標.

y,

【分析】(1)把C與D坐標代入二次函數(shù)解析式求出a與c的值,確定出二次函

數(shù)解析式,與一次函數(shù)解析式聯(lián)立求出E坐標即可;

(2)過M作MH垂直于x軸,與直線CE交于點H,四邊形COEM面積最大即

為三角形CME面積最大,構(gòu)造出二次函數(shù)求出最大值,并求出此時M坐標即可;

(3)令y=0,求出x的值,得出A與B坐標,由圓周角定理及相似的性質(zhì)得到

三角形AOC與三角形BOF相似,由相似得比例求出OF的長,即可確定出F坐標.

16a+-^+c=-2

【解答】解:(1)把C(0,2),D(4,-2)代入二次函數(shù)解析式得;

c=2

__2_

解得:③一萬,即二次函數(shù)解析式為廣-42+芻+2,

c33

聯(lián)立一次函數(shù)解析式得:

消去y得:?船+2=?4<2+3+2,

333

解得:x=0或x=3,

則E(3,1);

(2)如圖①,過M作MH〃y軸,交CE于點H,

設(shè)M(m,--?.m2+-^ni+2),貝ljH(m,-Am+2),

333

/.MH=(-2rn2十三m十2)-(?Lm+2)=--m2+2m,

3333

S四邊形COEM=S/,OCE+S/,CME=LX2X3+LMH,3=-m2+3m+3,

22

當m二一旦至?xí)r,S/大二生,此時M坐標為(3,3);

a242

(3)連接BF,如圖②所示,

當-QQ時,丫15+^^-,5-773

_2X2+_5X+2=X1-----------,X2----------,

3344

VZACO=ZABF,ZAOC=ZFOB,

AAAOC^AFOB,

;一5

??普罌嗯二2

F^+5,

解得:OF二國,

2

則F坐標為(0,-F

7°\

/1圖①“

貴州省中考數(shù)學(xué)模擬試卷(含答案)

一、選擇題(以下每個小題均有A、B、C、D四個選項.其中只有一個選項正確.

請用2B鉛筆在答題卡相應(yīng)位置作答.每題3分,共30分)

1.(3.00分)當x=-l時,代數(shù)式3x+l的值是()

A.-1B.-2C.4D.-4

2.(3.00分)如圖,在^ABC中有四條線段DE,BE,EF,FG,其中有一條線段

是4ABC的中線,則該線段是()

A.線段DEB.線段BEC.線段EFD.線段FG

3.(3.00分)如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()

A.三棱柱B.正方體C.三棱錐D.長方體

4.(3.00分)在〃生命安全〃主題教育活動中,為了解甲、乙、丙、丁四所學(xué)校學(xué)

生對生命安全知識掌握情況,小麗制定了如下方案,你認為最合理的是()

A.抽取乙校初二年級學(xué)生進行調(diào)查

B.在丙校隨機抽取600名學(xué)生進行調(diào)查

C.隨機抽取150名老師進行調(diào)查

D.在四個學(xué)校各隨機抽取150名學(xué)生進行調(diào)查

5.(3.00分)如圖,在菱形ABCD中,E是AC的中點,EF〃CB,交AB于點F,

如果EF=3,那么菱形ABCD的周長為()

A.24B.18C.12D.9

6.(3.00分)如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),

則圖中點C對應(yīng)的數(shù)是()

_|---1----1-------1---1---1-------

ACB

A.-2B.0C.1D.4

7.(3.00分)如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,

則tan/BAC的值為()

A.-LB.1C.返D.乃

23

8.(3.00分)如圖,小穎在圍棋盤上兩個格子的格點上任意擺放黑、白兩個棋子,

且兩個棋子不在同一條網(wǎng)格線上,其中,恰好擺放成如圖所示位置的概率是

()

-LB.-Lc.

1210i

9.(3.00分)一次函數(shù)y=kx-1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,

則點p的坐標可以為()

A.(-5,3)B.(L-3)C.(2,2)D.(5,-1)

10.(3.00分)已知二次函數(shù)y=-x2+x+6及一次函數(shù)y=-x+m,將該二次函數(shù)在

X軸上方的圖象沿X軸翻折到X軸下方,圖象的其余部分不變,得到一個新函數(shù)

(如圖所示),請你在圖中畫出這個新圖象,當直線y=?x+m與新圖象有4個交

點時,m的取值范圍是()

二、填空題(每小題4分,共20分)

11.(4.00分)某班50名學(xué)生在2018年適應(yīng)性考試中,數(shù)學(xué)成績在100?110

分這個分數(shù)段的頻率為0.2,則該班在這個分數(shù)段的學(xué)生為人.

12.(4.00分)如圖,過x軸上任意一點P作y軸的平行線,分別與反比例函數(shù)

y=_5.(x>0),y=-A(x>0)的圖象交于A點和B點,若C為y軸任意一點.連

XX

13.(4.00分)如圖,點M、N分別是正五邊形ABCDE的兩邊AB、BC上的點.且

AM二BN,點O是正五邊形的中心,則NMON的度數(shù)是度.

14.(4.。0分)己知關(guān)于x的不等式組名T無解'則a的取值范圍是一

15.(4.00分)如圖,在AABC中,BC=6,BC邊上的高為4,在AABC的內(nèi)部作

一個矩形EFGH,使EF在BC邊上,另外兩個頂點分別在AB、AC邊上,則對角

線EG長的最小值為.

三、解答題(本大題10個小題,共100分)

16.(10.00分)在6.26國際禁毒日到來之際,貴陽市教育局為了普及禁毒知識,

提高禁毒意識,舉辦了〃關(guān)愛生命,拒絕毒品〃的知識競賽.某校初一、初二年級

分別有300人,現(xiàn)從中各隨機抽取20名同學(xué)的測試成績進行調(diào)查分折,成績?nèi)?/p>

下:

初一:68881001007994898510088

1009098977794961009267

初二:69979169981009910090100

996997100999479999879

(1)根據(jù)上述數(shù)據(jù),將下列表格補充完成.

整理、描述數(shù)據(jù):

分數(shù)段60Wx<6970<x<7980<xW8990^x^100

初一人數(shù)22412

初二人數(shù)22115

分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率則表:

年級平均教中位教滿分率

初一90.19325%

初二92.8—20%

得出結(jié)論:

(2)估計該校初一、初二年級學(xué)生在本次測試成績中可以得到滿分的人數(shù)共

人:

(3)你認為哪個年級掌握禁毒知識的總體水平較好,說明理由.

17.(8.00分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個

矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.

(1)用含m或n的代數(shù)式表示拼成矩形的周長;

(2)m=7,n=4,求拼成矩形的面積.

18.(8.00分)如圖①,在RtAABC中,以下是小亮探究12一與之間關(guān)系

sinAsinB

的方法:

VsinA=—,sinB=—

cc

C=―-—,C=---

sinAsinB

??.aL_,b

sinAsinB

根據(jù)你掌握的三角函數(shù)知識.在圖②的銳角^ABC中,探究------卜-----J

sinAsinBsinC

之間的關(guān)系,并寫出探究過程.

圖①圖②

19.(10.00分)某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、

乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買

乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的裸數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹

苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買現(xiàn)種

樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

20.(10.00分)如圖,在平行四邊形ABCD中,AE是BC邊上的高,點F是DE

的中點,AB與AG關(guān)于AE對稱,AE與AF關(guān)于AG對稱.

(1)求證:4AEF是等邊三角形;

(2)若AB=2,求4AFD的面積.

21.(10.00分)圖①是一枚質(zhì)地均勻的正四面體形狀的骰子,每個面上分別標有

數(shù)字1,2,3,4,圖②是一個正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,

規(guī)則是:將這枚骰子擲出后,看骰子向上三個面(除底面外)的數(shù)字之和是幾,

就從圖②中的A點開始沿著順時針方向連續(xù)跳動幾個頂點,第二次從第一次的終

點處開始,按第一次的方法跳動.

(1)達機擲一次骰子,則棋子跳動到點C處的概率是

(2)隨機擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動到點C處的

概率.

22.(10.00分)六盤水市梅花山國際滑雪自建成以來,吸引大批滑雪愛好者,

滑雪者從山坡滑下,測得滑行距離y(單位:cm)與滑行時間x(單位:s)之間

的關(guān)系可以近似的用二次函數(shù)來表示.

滑行時間x/s0123...

滑行距離y/cm041224...

(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達式.現(xiàn)測量出滑雪者的出發(fā)點與終點的

距離大約800m,他需要多少時間才能到達終點?

(2)將得到的二次函數(shù)圖象補充完整后,向左平移2個單位,再向卜平移5個

單位,求平移后的函數(shù)表達式.

23.(10.00分)如圖,AB為。。的直徑,且AB=4,點C在半圓上,OC_LAB,垂

足為點0,P為半圓上任意一點,過P點作PE1OC于點E,設(shè)aOPE的內(nèi)心為M,

連接OM、PM.

(1)求N0MP的度數(shù);

(2)當點P在半圓上從點B運動到點A時,求內(nèi)心M所經(jīng)過的路徑長.

C

24.(12.00分)如圖,在矩形ABCD中,AB—2,AD=0P是BC邊上的一點,

且BP=2CP.

(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不

寫作法);

(2)如圖②,在(1)的條體下,判斷EB是否平分NAEC,并說明理由;

(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接

AP,不添加輔助線,APFB能否由都經(jīng)過P點的兩次變換與4PAE組成一個等腰

三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方

向和平移距離)

25.(12.00分)如圖,在平面直角坐標系xOy中,點A是反比例函數(shù)y二工工(x

x

>0,m>l)圖象上一點,點A的橫坐標為m,點B(0,-m)是y軸負半軸上

的一點,連接AB,AC1AB,交y軸于點C,延長CA到點D,使得AD二AC,過點

A作AE平行于x軸,過點D作y軸平行線交AE于點E.

(1)當m=3時,求點A的坐標;

(2)DE=,設(shè)點D的坐標為(x,y),求丫關(guān)于x的函數(shù)關(guān)系式和自變量

的取值范圍;

(3)連接BD,過點A作BD的平行線,與(2)中的函數(shù)圖象交于點F,當m

為何值時,以A、B、D、F為頂點的四邊形是平行四邊形?

參考答案與試題解析

一、選擇題(以下每個小題均有A、B、C、D四個選項.其中只有一個選項正確.

請用2B鉛筆在答題卡相應(yīng)位置作答.每題3分,共30分)

1.(3.00分)當x=-l時,代數(shù)式3x+l的值是()

A.-1B.-2C.4D.-4

【分析】把x的值代入解答即可.

【解答】解:把x=-1代入3x+l=-3+1=-2,

故選:B.

【點評】此題考查了代數(shù)式求值,熟練掌握運算法則是解本題的關(guān)鍵.

2.(3.00分)如圖,在AABC中有四條線段DE,BE,EF,FG,其中有一條線段

是aABC的中線,則該線段是()

A.線段DEB.線段BEC.線段EFD.線段FG

【分析】根據(jù)三角形?邊的中點與此邊所對頂點的連線叫做三角形的中線逐?判

斷即可得.

【解答】解:根據(jù)三角形中線的定義知線段BE是△ABC的中線,

故選:B.

【點評】本題主要考查三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點與此

邊所對頂點的連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論