數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案_第1頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案_第2頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案_第3頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案_第4頁
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)蘇教七年級下冊期末解答題壓軸模擬真題試題經(jīng)典答案一、解答題1.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.2.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).3.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).4.如圖,△ABC和△ADE有公共頂點A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點O作OG⊥AC,分別交AB、AD、AE于點G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長;②如圖2,∠AFO的平分線和∠AOF的平分線交于點M,∠FHD的平分線和∠OGB的平分線交于點N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請說明理由.5.已知,,點為射線上一點.(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點在延長線上時,求證:;(3)如圖3,平分,交于點,交于點,且:,,,求的度數(shù).6.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).7.如圖1,將一副三角板與三角板擺放在一起;如圖2,固定三角板,將三角板繞點A按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角().(1)當(dāng)________度時,;當(dāng)________度時;(2)當(dāng)?shù)囊贿吪c的某一邊平行(不共線)時,直接寫出旋轉(zhuǎn)角的所有可能的度數(shù);(3)當(dāng),連接,利用圖4探究的度數(shù)是否發(fā)生變化,并給出你的證明.8.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點,若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點,當(dāng)點在線段的延長線上從左向右移動的過程中,直接寫出與所有可能的數(shù)量關(guān)系.9.(想一想)在三角形的三條重要線段(高、中線、角平分線)中,能把三角形面積平分的是三角形的______;(比一比)如圖,已知,點、在直線上,點、在直線上,連接、、、,與相交于點,則的面積_______的面積;(填“>”“<”或“=”)(用一用)如圖所示,學(xué)校種植園有一塊四邊形試驗田STPQ.現(xiàn)準(zhǔn)備過點修一條筆直的小路(小路面積忽略不計),將試驗田分成面積相等的兩部分,安排“拾穗班”、“鋤禾班”兩班種植蔬菜,進行勞動實踐,王老師提醒同學(xué)們先把四邊形轉(zhuǎn)化為同面積的三角形,再把三角形的面積二等分即可.請你在下圖中畫出小路,并保留作圖痕跡.10.已知:射線(1)如圖1,的角平分線交射線與點,若,求的度數(shù).(2)如圖2,若點在射線上,平分交于點,平分交于點,,求的度數(shù).(3)如圖3,若,依次作出的角平分線,的角平分線,的角平分線,的角平分線,其中點,,,,,都在射線上,直接寫出的度數(shù).【參考答案】一、解答題1.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點O是∠AB故答案為:110°;C與∠ACB的角平分線的交點,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.2.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個角是另一個角的倍分情況進行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個角是另一個角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點睛】本題主要考查的是角平分線的性質(zhì)以及三角形內(nèi)角和定理的應(yīng)用.解決這個問題的關(guān)鍵就是要能根據(jù)角平分線的性質(zhì)將外角的度數(shù)與三角形的內(nèi)角聯(lián)系起來,然后再根據(jù)內(nèi)角和定理進行求解.另外需要分類討論的時候一定要注意分類討論的思想.3.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯誤;③設(shè)三角形的三個內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時,是“準(zhǔn)互余三角形”.【點睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進行求解.4.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵MF,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識,最后一個問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.5.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角,運用三角形外角性質(zhì)進行計算求解.解題時注意:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.6.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情況進行討論,即當(dāng)與,充分利用平行線的性質(zhì)、角平分線的性質(zhì)、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據(jù)題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質(zhì)、角平分線、三角形內(nèi)角和定理、垂直等相關(guān)知識點,解題的關(guān)鍵是掌握相關(guān)知識點,作出適當(dāng)?shù)妮o助線,通過分類討論及等量代換進行求解.7.(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當(dāng)時,,則可求得旋轉(zhuǎn)角解析:(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當(dāng)時,,則可求得旋轉(zhuǎn)角度;當(dāng)∥BC時,,則可求得旋轉(zhuǎn)角度;(2)分五種情況考慮:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分別求出旋轉(zhuǎn)角;(3)設(shè)BD分別交、于點M、N,利用三角形的內(nèi)外角的相等關(guān)系分別得出:及,由的內(nèi)角和為180°,即可得出結(jié)論.【詳解】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當(dāng)時,如圖,∵,∠EAD=45°∴即旋轉(zhuǎn)角當(dāng)時,如圖,則∴=45°-30°=15°即旋轉(zhuǎn)角°故答案為:105,15(2)當(dāng)?shù)囊贿吪c的某一邊平行(不共線)時,有五種情況當(dāng)AD∥BC時,由(1)知旋轉(zhuǎn)角為15°;如圖(1),當(dāng)DE∥AB時,旋轉(zhuǎn)角為45°;當(dāng)DE∥BC時,由AD⊥DE,則有AD⊥BC,此時由(1)知,旋轉(zhuǎn)角為105°;如圖(2),當(dāng)DE∥AC時,則旋轉(zhuǎn)角為135°;如圖(3),當(dāng)AE∥BC時,則旋轉(zhuǎn)角為150°;所以旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°(3)當(dāng),,保持不變;理由如下:設(shè)BD分別交、于點M、N,如圖在中,,,【點睛】本題考查了圖形旋轉(zhuǎn)的性質(zhì),三角形內(nèi)角和定理,三角形的外角與不相鄰的兩個內(nèi)角的相等關(guān)系等知識,注意旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向和旋轉(zhuǎn)角度.8.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長BA、DC使之相交于點E,延長MC與BA的延長線相交于點F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點睛】本題考查了平行線的性質(zhì).解答該題時,通過作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來,從而求得∠M的度數(shù).9.想一想:中線;比一比:=;用一用:見解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用解析:想一想:中線;比一比:=;用一用:見解析【分析】想一想:三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論