人教版初一數(shù)學(xué)下冊相期末壓軸題易錯(cuò)題試題(帶答案)(二)_第1頁
人教版初一數(shù)學(xué)下冊相期末壓軸題易錯(cuò)題試題(帶答案)(二)_第2頁
人教版初一數(shù)學(xué)下冊相期末壓軸題易錯(cuò)題試題(帶答案)(二)_第3頁
人教版初一數(shù)學(xué)下冊相期末壓軸題易錯(cuò)題試題(帶答案)(二)_第4頁
人教版初一數(shù)學(xué)下冊相期末壓軸題易錯(cuò)題試題(帶答案)(二)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時(shí),我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運(yùn)用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點(diǎn)在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點(diǎn)在軸上,是“等距三角形”,請直接寫出的取值范圍.解析:(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點(diǎn)之間的直角距離的定義,結(jié)合O、P兩點(diǎn)的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的直角距離的定義,用含x、y的代數(shù)式表示出來d(O,Q)=4,結(jié)合點(diǎn)Q(x,y)在第一象限,即可得出結(jié)論;(3)由點(diǎn)N在直線y=x+3上,設(shè)出點(diǎn)N的坐標(biāo)為(m,m+3),通過尋找d(M,N)的最小值,得出點(diǎn)M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點(diǎn)C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點(diǎn)C在x軸上時(shí),點(diǎn)C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時(shí),dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時(shí),dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時(shí),dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時(shí),△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時(shí),m的取值范圍為:m≥4.【點(diǎn)睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對“勾股距”和“等距三角形”新概念的理解,運(yùn)用“勾股距”和“等距三角形”解題.2.如圖:在四邊形ABCD中,A、B、C、D四個(gè)點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個(gè)單位,再向左平移2個(gè)單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.解析:(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個(gè)單位,縱坐標(biāo)加1;向左平移2個(gè)單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對應(yīng)點(diǎn)位置是解題關(guān)鍵.3.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為.(1)請直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長交x軸于點(diǎn)E,過點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.4.在平面直角坐標(biāo)系中,已知長方形,點(diǎn),.(1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運(yùn)動(dòng)過程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.解析:(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點(diǎn)在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長方形向上平移個(gè)單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過等量轉(zhuǎn)化,即可得出和的面積,進(jìn)而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點(diǎn)E,延長CB至x軸,交于點(diǎn)F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點(diǎn)在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點(diǎn)E,由已知得,,∵點(diǎn)在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長方形向上平移個(gè)單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點(diǎn)睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.5.如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B(3,0)向上平移2個(gè)單位長度再向右平移1個(gè)單位長度,分別得到A、B的對應(yīng)點(diǎn)C、D.連接AC,BD(1)求點(diǎn)C、D的坐標(biāo),并描出A、B、C、D點(diǎn),求四邊形ABDC面積;(2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請說明理由.解析:(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標(biāo)為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標(biāo)加,向上平移縱坐標(biāo)加寫出點(diǎn)C、D的坐標(biāo)即可,再根據(jù)平行四邊形的面積公式列式計(jì)算即可得解;(2)分點(diǎn)P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點(diǎn)C坐標(biāo)為(﹣1+1,0+2),即(0,2),點(diǎn)D的坐標(biāo)為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當(dāng)P在x軸上時(shí),∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點(diǎn)P的坐標(biāo)為(7,0)或(﹣9,0);當(dāng)P在y軸上時(shí),∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點(diǎn)P的坐標(biāo)為(0,18)或(0,﹣14);綜上,點(diǎn)P的坐標(biāo)為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),三角形的面積,坐標(biāo)與圖形變化﹣平移,熟記各性質(zhì)是解題的關(guān)鍵.6.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).解析:(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點(diǎn)P的坐標(biāo);(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點(diǎn)E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點(diǎn)E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),熟知非負(fù)數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.7.如圖,在長方形中,為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為且、滿足,點(diǎn)在第一象限內(nèi),點(diǎn)從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著的線路移動(dòng).(1)點(diǎn)的坐標(biāo)為___________;當(dāng)點(diǎn)移動(dòng)5秒時(shí),點(diǎn)的坐標(biāo)為___________;(2)在移動(dòng)過程中,當(dāng)點(diǎn)到軸的距離為4個(gè)單位長度時(shí),求點(diǎn)移動(dòng)的時(shí)間;(3)在的線路移動(dòng)過程中,是否存在點(diǎn)使的面積是20,若存在直接寫出點(diǎn)移動(dòng)的時(shí)間;若不存在,請說明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負(fù)數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點(diǎn)B的坐標(biāo);由點(diǎn)P運(yùn)動(dòng)速度和時(shí)間可得其運(yùn)動(dòng)5秒的路程,得到OP=10,從而得出其坐標(biāo);(2)先根據(jù)點(diǎn)P運(yùn)動(dòng)11秒判斷出點(diǎn)P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點(diǎn)P在OC、BC上分類計(jì)算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點(diǎn)B(8,12);當(dāng)點(diǎn)P移動(dòng)5秒時(shí),其運(yùn)動(dòng)路程為5×2=10,∴OP=10,則點(diǎn)P坐標(biāo)為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當(dāng)點(diǎn)P在OC上時(shí),點(diǎn)P移動(dòng)的時(shí)間是:4÷2=2秒,第二種情況,當(dāng)點(diǎn)P在BA上時(shí).點(diǎn)P移動(dòng)的時(shí)間是:(12+8+8)÷2=14秒,所以在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸的距離為4個(gè)單位長度時(shí),點(diǎn)P移動(dòng)的時(shí)間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時(shí)t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時(shí)t=,綜上所述,滿足條件的時(shí)間t=2.5s或【點(diǎn)睛】本題考查矩形的性質(zhì),三角形的面積,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.8.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).解析:(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.9.如圖,直線,點(diǎn)是、之間(不在直線,上)的一個(gè)動(dòng)點(diǎn).(1)如圖1,若與都是銳角,請寫出與,之間的數(shù)量關(guān)系并說明理由;(2)把直角三角形如圖2擺放,直角頂點(diǎn)在兩條平行線之間,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),點(diǎn)在線段上,連接,有,求的值;(3)如圖3,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù).解析:(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯(cuò)角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯(cuò)角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.10.如圖,,直線與、分別交于點(diǎn)、,點(diǎn)在直線上,過點(diǎn)作,垂足為點(diǎn).(1)如圖1,求證:;(2)若點(diǎn)在線段上(不與、、重合),連接,和的平分線交于點(diǎn)請?jiān)趫D2中補(bǔ)全圖形,猜想并證明與的數(shù)量關(guān)系;解析:(1)證明見解析;(2)補(bǔ)圖見解析;當(dāng)點(diǎn)在上時(shí),;當(dāng)點(diǎn)在上時(shí),.【分析】(1)過點(diǎn)作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點(diǎn)在上,當(dāng)點(diǎn)在上,再過點(diǎn)作即可求解.【詳解】(1)證明:如圖,過點(diǎn)作,∴,∵,∴.∴.∵,∴,∴.(2)補(bǔ)全圖形如圖2、圖3,猜想:或.證明:過點(diǎn)作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點(diǎn)在上時(shí),∵平分,∴,∵,∴,即.如圖2,當(dāng)點(diǎn)在上時(shí),∵平分,∴.∴.即.【點(diǎn)睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運(yùn)算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.11.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.12.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.13.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識是解題的關(guān)鍵.14.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論