版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸模擬試題經(jīng)典套題解析一、解答題1.(1)如圖1,∠BAD的平分線(xiàn)AE與∠BCD的平分線(xiàn)CE交于點(diǎn)E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線(xiàn)AE與∠BCD的平分線(xiàn)CE交于點(diǎn)E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點(diǎn)O,點(diǎn)A是平面內(nèi)一點(diǎn),AB、AC交MN于B、C兩點(diǎn),AD平分∠BAC交PQ于點(diǎn)D,請(qǐng)問(wèn)的值是否發(fā)生變化?若不變,求出其值;若改變,請(qǐng)說(shuō)明理由.2.如圖①,將一副直角三角板放在同一條直線(xiàn)AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第____________秒時(shí),直線(xiàn)MN恰好與直線(xiàn)CD垂直.(直接寫(xiě)出結(jié)果)3.在中,射線(xiàn)平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),的角平分線(xiàn)所在直線(xiàn)與射線(xiàn)交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.4.如圖,△ABC中,∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線(xiàn)與∠A1CD的角平分線(xiàn)交于A2,∠A2BC與A2CD的平分線(xiàn)交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫(xiě)出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線(xiàn)及外角∠DCE的平分線(xiàn)所在的直線(xiàn)構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線(xiàn)交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫(xiě)出正確的結(jié)論,并求出其值.5.如果三角形的兩個(gè)內(nèi)角與滿(mǎn)足,那么我們稱(chēng)這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線(xiàn),求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線(xiàn)上兩點(diǎn),點(diǎn)在直線(xiàn)外,且.若是直線(xiàn)上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).6.閱讀材料:如圖1,點(diǎn)是直線(xiàn)上一點(diǎn),上方的四邊形中,,延長(zhǎng),,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過(guò)推理可以得到,從而得出結(jié)論”.請(qǐng)按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長(zhǎng),交的平分線(xiàn)于點(diǎn)(如圖3),設(shè),請(qǐng)直接寫(xiě)出的度數(shù)(用含的式子表示).7.如圖,,點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn),作的平分線(xiàn)交于點(diǎn),請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線(xiàn)交于點(diǎn)”改為“作射線(xiàn)將分為兩個(gè)部分,交于點(diǎn)”,其余條件不變,連接,若恰好平分,請(qǐng)直接寫(xiě)出__________(用含的式子表示).8.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線(xiàn)”.其中,BD是“鄰AB三分線(xiàn)”,BE是“鄰BC三分線(xiàn)”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線(xiàn)BD交AC于點(diǎn)D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線(xiàn)和∠ACB鄰BC三分線(xiàn),且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線(xiàn)所在的直線(xiàn)與∠ACD的三分線(xiàn)所在的直線(xiàn)交于點(diǎn)P.若∠A=m°(),∠B=54°,直接寫(xiě)出∠BPC的度數(shù).(用含m的代數(shù)式表示)9.模型規(guī)律:如圖1,延長(zhǎng)交于點(diǎn)D,則.因?yàn)榘妓倪呅涡嗡萍^,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(xiàn)(即角平分線(xiàn))、交于點(diǎn),已知,,則__________;②如圖5,、分別為、的10等分線(xiàn).它們的交點(diǎn)從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線(xiàn)、交于點(diǎn)D,已知,則__________;④如圖7,、的角平分線(xiàn)、交于點(diǎn)D,則、、之同的數(shù)量關(guān)系為_(kāi)_________.10.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線(xiàn)所夾角的探究片段,完成所提出的問(wèn)題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線(xiàn)BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90o+∠A,(請(qǐng)補(bǔ)齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線(xiàn),∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線(xiàn)BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.(應(yīng)用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線(xiàn),又CE、DE分別是∠ACD和∠BDC的角平分線(xiàn),則∠E=_______;(拓展):如圖4,直線(xiàn)MN與直線(xiàn)PQ相交于O,∠MOQ=60o,點(diǎn)A在射線(xiàn)OP上運(yùn)動(dòng),點(diǎn)B在射線(xiàn)OM上運(yùn)動(dòng),延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線(xiàn)與∠BOQ的角平分線(xiàn)及其延長(zhǎng)線(xiàn)交于E、F,在ΔAEF中,如果有一個(gè)角是另一個(gè)角的4倍,則∠ABO=______.【參考答案】一、解答題1.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線(xiàn)的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線(xiàn)的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長(zhǎng)BC交AD于點(diǎn)F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線(xiàn)的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線(xiàn)的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長(zhǎng)BC交AD于點(diǎn)F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點(diǎn)睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線(xiàn)的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.2.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線(xiàn)平行,同旁?xún)?nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫(huà)出圖形,求出在MN⊥CD時(shí)的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時(shí),旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時(shí),直線(xiàn)MN恰好與直線(xiàn)CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線(xiàn)的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫(huà)出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).3.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線(xiàn)ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.4.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線(xiàn)的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線(xiàn)的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線(xiàn)的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn),∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線(xiàn)與∠ACB的外角∠ACD的平分線(xiàn)∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線(xiàn),∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點(diǎn)睛】本題主要考查三角形的外角性質(zhì)和角平分線(xiàn)的定義的運(yùn)用,根據(jù)推導(dǎo)過(guò)程對(duì)題目的結(jié)果進(jìn)行規(guī)律總結(jié)對(duì)解題比較重要.5.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線(xiàn),證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線(xiàn),證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類(lèi)討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線(xiàn),∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.6.閱讀材料:,見(jiàn)解析;拓展延伸:.【分析】(1)作,,,由平行線(xiàn)性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過(guò)H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見(jiàn)解析;拓展延伸:.【分析】(1)作,,,由平行線(xiàn)性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過(guò)H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過(guò)H點(diǎn)作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點(diǎn)評(píng)】本題主要考查了平行線(xiàn)的性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線(xiàn)構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.7.(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線(xiàn)的傳遞性推出,再利用平行線(xiàn)的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情解析:(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線(xiàn)的傳遞性推出,再利用平行線(xiàn)的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情況進(jìn)行討論,即當(dāng)與,充分利用平行線(xiàn)的性質(zhì)、角平分線(xiàn)的性質(zhì)、等量代換的思想進(jìn)行求解.【詳解】(1)過(guò)點(diǎn)作,,,,.(2)根據(jù)題意,補(bǔ)全圖形如下:猜測(cè),由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì)、角平分線(xiàn)、三角形內(nèi)角和定理、垂直等相關(guān)知識(shí)點(diǎn),解題的關(guān)鍵是掌握相關(guān)知識(shí)點(diǎn),作出適當(dāng)?shù)妮o助線(xiàn),通過(guò)分類(lèi)討論及等量代換進(jìn)行求解.8.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線(xiàn)有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線(xiàn)和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線(xiàn)有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線(xiàn)和鄰三分線(xiàn),且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線(xiàn)所在的直線(xiàn)與的三分線(xiàn)所在的直線(xiàn)交于點(diǎn).分四種情況畫(huà)圖:情況一:如圖①,當(dāng)和分別是“鄰三分線(xiàn)”、“鄰三分線(xiàn)”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線(xiàn)”、“鄰三分線(xiàn)”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線(xiàn)”、“鄰三分線(xiàn)”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線(xiàn)”、“鄰三分線(xiàn)”時(shí),再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)BD是“鄰AB三分線(xiàn)”時(shí),;當(dāng)BD是“鄰BC三分線(xiàn)”時(shí),;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線(xiàn)和鄰BC三分線(xiàn),∴,∴,∴,在△ABC中,,∴.(3)分4種情況進(jìn)行畫(huà)圖計(jì)算:情況一:如圖①,當(dāng)BP和CP分別是“鄰AB三分線(xiàn)”、“鄰AC三分線(xiàn)”時(shí),∴;情況二:如圖②,當(dāng)BP和CP分別是“鄰BC三分線(xiàn)”、“鄰CD三分線(xiàn)”時(shí),∴;情況三:如圖③,當(dāng)BP和CP分別是“鄰BC三分線(xiàn)”、“鄰AC三分線(xiàn)”時(shí),∴;情況四:如圖④,當(dāng)BP和CP分別是“鄰AB三分線(xiàn)”、“鄰CD三分線(xiàn)”時(shí),;綜上所述:的度數(shù)為:或或或.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握并靈活運(yùn)用三角形的外角性質(zhì),注意要分情況討論.9.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入計(jì)算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入計(jì)算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入計(jì)算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)計(jì)算可得;④根據(jù)兩個(gè)凹四邊形ABOD和ABOC得到兩個(gè)等式,聯(lián)立可得結(jié)論.【詳解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,聯(lián)立得:∠B-∠C+2∠D=0.【點(diǎn)睛】本題主要考查了新定義—箭頭四角形,利用了三角形外角的性質(zhì),還考查了角平分線(xiàn)的定義,圖形類(lèi)規(guī)律,解題的關(guān)鍵是理解箭頭四角形,并能熟練運(yùn)用其性質(zhì).10.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見(jiàn)解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線(xiàn)的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見(jiàn)解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線(xiàn)的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內(nèi)角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【探究2】如圖2,由三角形的外角性質(zhì)和角平分線(xiàn)的定義可得∠OBC=(∠A+∠ACB),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同超期提醒函數(shù)模板(3篇)
- 水池填平施工方案(3篇)
- 工地施工方案網(wǎng)站(3篇)
- 卸載土方施工方案(3篇)
- 氣割管線(xiàn)施工方案(3篇)
- 找水施工方案(3篇)
- 改造環(huán)網(wǎng)柜施工方案(3篇)
- 水廠打井施工方案(3篇)
- 單個(gè)施工方案范本(3篇)
- 疏浚管道施工方案(3篇)
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十二章運(yùn)動(dòng)技能學(xué)習(xí)的反饋
- 高考作文標(biāo)準(zhǔn)方格紙-A4-可直接打印
- 應(yīng)急救援器材培訓(xùn)課件
- 小學(xué)美術(shù)四年級(jí)上冊(cè) 3. 周末日記 公開(kāi)課比賽一等獎(jiǎng)
- 塑料制品行業(yè)財(cái)務(wù)工作年度績(jī)效報(bào)告
- 皮膚科護(hù)理中的振動(dòng)按摩在皮膚病管理中的應(yīng)用
- 20以?xún)?nèi)進(jìn)位加法100題(精心整理6套-可打印A4)
- 腸內(nèi)營(yíng)養(yǎng)考評(píng)標(biāo)準(zhǔn)終
- 項(xiàng)目全周期現(xiàn)金流管理培訓(xùn)
- 生物化學(xué)實(shí)驗(yàn)智慧樹(shù)知到答案章節(jié)測(cè)試2023年浙江大學(xué)
- 等腰三角形復(fù)習(xí)課教案
評(píng)論
0/150
提交評(píng)論