版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.2、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.3、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.4、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°5、在不透明口袋內(nèi)裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.?dāng)嚢杈鶆蚝螅S機抽取一個小球,是紅球的概率為()A. B. C. D.6、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.7、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)大于2且小于5的概率是()A. B. C. D.8、如圖,在中,,,若以點為圓心,的長為半徑的圓恰好經(jīng)過的中點,則的長等于()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.2、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機抽取一張,將卡片上的數(shù)字記為,則點在第四象限的概率為__________.3、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關(guān)系是__________.4、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.5、到點的距離等于8厘米的點的軌跡是__.6、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.7、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點O到點A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.三、解答題(7小題,每小題0分,共計0分)1、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.2、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.3、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉(zhuǎn),得到,連接.(1)當(dāng)時,時,求證:;(2)當(dāng)時,與有怎樣的數(shù)量關(guān)系?請寫出,并說明理由.(3)在(2)的結(jié)論下,當(dāng),BD與DE滿足怎樣的數(shù)量關(guān)系時,是等腰直角三角形?(直接寫出結(jié)論,不必證明)4、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點B按順時針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點C′位置時,A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點在一條直線上時,請直接寫出此時旋轉(zhuǎn)角α的度數(shù).5、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)6、在平面直角坐標(biāo)系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關(guān)聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標(biāo)都是整數(shù).在點B,C,D中,與點A組成的“成對關(guān)聯(lián)點”的點是______;(2)點在第一象限,點F與點E關(guān)于x軸對稱.若點E,F(xiàn)是的“成對關(guān)聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關(guān)聯(lián)點”,直接寫出點G的縱坐標(biāo)的取值范圍.7、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.-參考答案-一、單選題1、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.2、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.3、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應(yīng)了空間幾何體的長度和寬度是解題的關(guān)鍵.4、B【分析】求出正五邊形的一個內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內(nèi)角度數(shù)是解決問題的關(guān)鍵.5、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.7、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點數(shù)可能是3或4,利用概率公式計算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點數(shù)分別為1,2,3,4,5,6,∴點數(shù)大于2且小于5的有3或4,∴向上一面的點數(shù)大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關(guān)鍵.8、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點D是AB的中點,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.二、填空題1、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、【分析】第四象限點的特征是,所以當(dāng)橫坐標(biāo)只能為2或3,縱坐標(biāo)只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進(jìn)一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點的坐標(biāo)特征是,∴滿足條件的點分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結(jié)果,∴點在第四象限的概率為.故答案為:【點睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點是解題關(guān)鍵.3、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.4、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關(guān)鍵是把不規(guī)則圖形面積通過割補轉(zhuǎn)化為規(guī)則圖形的面積計算.5、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進(jìn)行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關(guān)鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.6、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點,進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.7、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.三、解答題1、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據(jù)線段垂直平分線的判定與性質(zhì)可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設(shè),則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質(zhì)、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形和直角三角形是解題關(guān)鍵.2、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結(jié)論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結(jié)論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①當(dāng)MA經(jīng)過BC的中點E時,同(1)作輔助線,如圖:設(shè)FD=x,由(1)的結(jié)論得FG=EF=2+x,F(xiàn)C=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②當(dāng)NA經(jīng)過BC的中點G時,同(2)作輔助線,設(shè)BE=x,由(2)的結(jié)論得EC=4+x,EF=FH,∵K為BC邊的中點,∴CK=BC=2,同理可證△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.綜上,線段EF的長為或.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會利用旋轉(zhuǎn)法添加輔助線,構(gòu)造全等三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.3、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對應(yīng)角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據(jù)等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉(zhuǎn)得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),熟記旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關(guān)鍵.4、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當(dāng)點三點在一條直線上時,由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,,則旋轉(zhuǎn)角.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.5、(1)(2)此游戲公平,理由見解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列舉出所有可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 娛樂直播運營基礎(chǔ)知識
- 2026年社區(qū)工作者三力考試題庫及詳細(xì)解答
- 廣東省廣州市黃埔區(qū)2023-2024學(xué)年七年級上學(xué)期生物期末試題(含答案)
- 2026年水利崗位情景模擬面試試題含答案
- 中國大數(shù)據(jù)技術(shù)大會
- 樂山2025年樂山市五通橋區(qū)上半年考核招聘33名事業(yè)單位工作人員筆試歷年備考題庫附帶答案詳解
- 麗水2025年浙江麗水龍泉市招聘專職社區(qū)工作者15人筆試歷年典型考點題庫附帶答案詳解
- 《GBT 16638.4-2008空氣動力學(xué) 概念、量和符號 第4部分:飛機的空氣動力、力矩及其系數(shù)和導(dǎo)數(shù)》專題研究報告
- 中國人壽銷售培訓(xùn)
- 醫(yī)療醫(yī)療廢物處置設(shè)施監(jiān)督檢查制度
- 福建省泉州市豐澤區(qū)2024-2025學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(原卷版+解析版)
- 湖北省荊州市八縣2024-2025學(xué)年高一上學(xué)期期末聯(lián)考物理試題(原卷版)
- 民政局離婚協(xié)議(2025年版)
- 肝衰竭診治指南(2024年版)解讀
- 平面設(shè)計制作合同范本
- 國家開放大學(xué)行管??啤侗O(jiān)督學(xué)》期末紙質(zhì)考試總題庫2025春期版
- 酒店行業(yè)電氣安全檢查制度
- 2024版國開法律事務(wù)專科《勞動與社會保障法》期末考試總題庫
- 四川省南充市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試題含解析
- 2024屆高考語文復(fù)習(xí):二元思辨類作文
- 《數(shù)字貿(mào)易學(xué)》教學(xué)大綱、二維碼試題及答案
評論
0/150
提交評論