版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當的面積是的面積的3倍時,求點的坐標;(3)設,,,判斷、、之間的數量關系,并說明理由.2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關系?并說明理由;(3)利用(2)的結論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數量關系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數式表示)3.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數.(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)4.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數.②如圖3,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數.(用含有α,β的式子表示)5.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質:入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數;(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數;(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構成四邊形ABCD,光線從點O以適當的角度射出后,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數量關系,并說明理由.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數量關系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.規(guī)定:求若干個相同的有理數(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈
n次方”.(初步探究)(1)直接寫出計算結果:2③=___,()⑤=___;(2)關于除方,下列說法錯誤的是___A.任何非零數的圈2次方都等于1;
B.對于任何正整數n,1?=1;C.3④=4③;
D.負數的圈奇數次方結果是負數,負數的圈偶數次方結果是正數.(深入思考)我們知道,有理數的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數的除方運算如何轉化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式.(-3)④=___;
5⑥=___;(-)⑩=___.(2)想一想:將一個非零有理數a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷8.閱讀下面文字:對于可以如下計算:原式上面這種方法叫拆項法,你看懂了嗎?仿照上面的方法,計算:(1)(2)9.探究與應用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當的數;(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結果用科學記數法表示)10.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數)(3)求11.先閱讀材料,再解答問題:我國數學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問計算的奧妙,你知道華羅庚怎樣迅速而準確地計算出結果嗎?請你按下面的步驟也試一試:(1)我們知道,,那么,請你猜想:59319的立方根是_______位數(2)在自然數1到9這九個數字中,________,________,________.猜想:59319的個位數字是9,則59319的立方根的個位數字是________.(3)如果劃去59319后面的三位“319”得到數59,而,,由此可確定59319的立方根的十位數字是________,因此59319的立方根是________.(4)現(xiàn)在換一個數103823,你能按這種方法得出它的立方根嗎?12.對于實數a,我們規(guī)定:用符號表示不大于的最大整數,稱為a的根整數,例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數值______.如果我們對a連續(xù)求根整數,直到結果為1為止.例如:對10連續(xù)求根整數2次=1,這時候結果為1.(3)對100連續(xù)求根整數,____次之后結果為1.(4)只需進行3次連續(xù)求根整數運算后結果為1的所有正整數中,最大的是____.13.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數;②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標14.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內,;在內,,直線分別交、分別于點、,且,直接寫出的值.15.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).(1)直接寫出點E的坐標;D的坐標(3)點P是線段CE上一動點,設∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數量關系,并證明你的結論.16.如圖所示,在平面直角坐標系中,點A,,的坐標為,,,其中,,滿足,.(1)求,,的值;(2)若在軸上,且,求點坐標;(3)如果在第二象限內有一點,在什么取值范圍時,的面積不大于的面積?求出在符合條件下,面積最大值時點的坐標.17.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.18.如圖1,在直角坐標系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標為且,求的值;(3)如圖2,點坐標是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內部(不包含三角形的邊),求的取值范圍.19.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?20.(1)閱讀下列材料并填空:對于二元一次方程組,我們可以將x,y的系數和相應的常數項排成一個數表,求得的一次方程組的解,用數表可表示為.用數表可以簡化表達解一次方程組的過程如下,請補全其中的空白:從而得到該方程組的解為x=,y=.(2)仿照(1)中數表的書寫格式寫出解方程組的過程.21.閱讀下面資料:小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B2AB,B1C2BC,C1A2CA,根據等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個問題.(1)直接寫出S1(用含字母a的式子表示).請參考小明同學思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.22.學校計劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需120元;購買5個A獎品和4個B獎品共需210元.(1)求A,B兩種獎品的單價;(2)學校準備購買A,B兩種獎品共30個,且A獎品的數量不少于B獎品數量的.請設計出最省錢的購買方案,并說明理由.23.如果3個數位相同的自然數m,n,k滿足:m+n=k,且k各數位上的數字全部相同,則稱數m和數n是一對“黃金搭檔數”.例如:因為25,63,88都是兩位數,且25+63=88,則25和63是一對“黃金搭檔數”.再如:因為152,514,666都是三位數,且152+514=666,則152和514是一對“黃金搭檔數”.(1)分別判斷87和12,62和49是否是一對“黃金搭檔數”,并說明理由;(2)已知兩位數s和兩位數t的十位數字相同,若s和t是一對“黃金搭檔數”,并且s與t的和能被7整除,求出滿足題意的s.24.如圖,在平面直角坐標系中,已知,點,,,,,滿足,(1)直接寫出點,,的坐標及的面積;(2)如圖2,過點作直線,已知是上的一點,且,求的取值范圍;(3)如圖3,是線段上一點,①求,之間的關系;②點為點關于軸的對稱點,已知,求點的坐標.25.若任意一個代數式,在給定的范圍內求得的最大值和最小值恰好也在該范圍內,則稱這個代數式是這個范圍的“湘一代數式”.例如:關于x的代數式,當1x1時,代數式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內,則稱代數式是1x1的“湘一代數式”.(1)若關于的代數式,當時,取得的最大值為,最小值為,所以代數式(填“是”或“不是”)的“湘一代數式”.(2)若關于的代數式是的“湘一代數式”,求a的最大值與最小值.(3)若關于的代數式是的“湘一代數式”,求m的取值范圍.26.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉化為不等式組求解,如;方法二,利用不等式的性質直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉化為不等式組;(2)利用不等式的性質解雙連不等式;(3)已知,求的整數值.27.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數約20次,他采取哪種購票方式比較合算?(3)小明根據自己進入拓展中心的次數,購買了A類年票,請問他一年中進入該中心不低于多少次?28.對于實數x,若,則符合條件的中最大的正數為的內數,例如:8的內數是5;7的內數是4.(1)1的內數是______,20的內數是______,6的內數是______;(2)若3是x的內數,求x的取值范圍;(3)一動點從原點出發(fā),以3個單位/秒的速度按如圖1所示的方向前進,經過秒后,動點經過的格點(橫,縱坐標均為整數的點)中能圍成的最大實心正方形的格點數(包括正方形邊界與內部的格點)為,例如當時,,如圖2①……;當時,,如圖2②,③;……①用表示的內數;②當的內數為9時,符合條件的最大實心正方形有多少個,在這些實心正方形的格點中,直接寫出離原點最遠的格點的坐標.(若有多點并列最遠,全部寫出)29.在平面直角坐標系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內垂點為;(2)點M是線段AB的最佳內垂點且到線段AB的距離是2,則點M的坐標為;(3)點N在y軸上且為線段AC的內垂點,則點N的縱坐標n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內垂點,求m的取值范圍.30.如圖1在平面直角坐標系中,大正方形OABC的邊長為m厘米,小正方形ODEF的邊長為n厘米,且|m﹣4|+=0.(1)求點B、點D的坐標.(2)起始狀態(tài)如圖1所示,將大正方形固定不動,小正方形以1厘米/秒的速度沿x軸向右平移,如圖2.設平移的時間為t秒,在平移過程中兩個正方形重疊部分的面積為S平方厘米.①當t=1.5時,S=平方厘米;②在2≤t≤4這段時間內,小正方形的一條對角線掃過的圖形的面積為平方厘米;③在小正方形平移過程中,若S=2,則小正方形平移的時間t為秒.(3)將大正方形固定不動,小正方形從圖1中起始狀態(tài)沿x軸向右平移,在平移過程中,連接AD,過D點作DM⊥AD交直線BC于M,∠DAx的角平分線所在直線和∠CMD的角平分線所在直線交于N(不考慮N點與A點重合的情形),求∠ANM的大小并說明理由.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1),;(2)點D的坐標為或;(3)之間的數量關系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質確定BC∥OA,且BC=OA,可得結論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數量關系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質,平行線的性質和判定,解題的關鍵是分點D在線段OA上,和OA延長線上兩種情況.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據兩直線平行,內錯角相等可得∠APM=∠DAP,再根據平行公理求出CD∥EF然后根據兩直線平行,內錯角相等可得∠MPB=∠FBP,最后根據∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結論:∠APB=∠DAP+∠FBP.(3)①根據(2)的規(guī)律和角平分線定義解答;②根據①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質,角平分線的定義,熟記性質與概念是解題的關鍵,此類題目,難點在于過拐點作平行線.3.(1)①PM⊥MN,理由見解析;②∠EPB的度數為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質得到∠APM=∠PMQ,再根據已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質,熟練掌握兩直線平行,內錯角相等;兩直線平行,同旁內角互補;兩直線平行,同位角相等等知識是解題的關鍵.4.(1)見解析;(2)55°;(3)【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖2,過點作,當點在點的左側時,根據,,根據平行線的性質及角平分線的定義即可求的度數;②如圖3,過點作,當點在點的右側時,,,根據平行線的性質及角平分線的定義即可求出的度數.【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數為.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據∠OPA=∠QPB.可求出∠OPA的度數;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數,轉化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質和入射角等于反射角的規(guī)定,解決本題的關鍵是注意問題的設置環(huán)環(huán)相扣、前為后用的設置目的.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質得到,等量代換得出,即可根據“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據平行線的性質及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質,熟記平行線的判定與性質及作出合理的輔助線是解題的關鍵.7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根據除方運算的定義即可得出答案;(2)根據除方運算的定義逐一判斷即可得出答案;深入思考:(1)根據除方運算的定義即可得出答案;(2)根據(1)即可總結出(2)中的規(guī)律;(3)先按照除方的定義將每個數的圈n次方算出來,再根據有理數的混合運算法則即可得出答案.【詳解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零數的圈2次方就是兩個相同數相除,所以都等于1,故選項A錯誤;B:因為多少個1相除都是1,所以對于任何正整數n,1?都等于1,故選項B錯誤;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故選項C正確;D:負數的圈奇數次方,相當于奇數個負數相除,則結果是負數;負數的圈偶數次方,相當于偶數個負數相除,則結果是正數,故選項D錯誤;故答案選擇:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=
5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)a?=a÷a÷a…÷a=(3)原式====-5【點睛】本題主要考查了除方運算,運用到的知識點是有理數的混合運算,掌握有理數混合運算的法則是解決本題的關鍵.8.(1)(2)【分析】(1)根據例子將每項的整數部分相加,分數部分相加即可解答;(2)根據例子將每項的整數部分相加,分數部分相加即可解答.【詳解】(1)(2)原式【點睛】此題考察新計算方法,正確理解題意是解題的關鍵,根據例子即可仿照計算.9.(1)2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根據從1開始連續(xù)n各奇數的和等于奇數的個數的平方即可得到.(2)根據規(guī)律寫出即可.(3)先提取符號,再用規(guī)律解題.【詳解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案為:2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【點睛】本題考查數字變化規(guī)律,解題的關鍵是找到第一個的規(guī)律,然后加以運用即可.10.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結論,先寫出中各數的值,然后通過提取公因式、有理數加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數)故應填:;;(3)由(2)的結論得:則.【點睛】本題考查了有理數運算的規(guī)律類問題,依據已知等式歸納總結出等式的一般規(guī)律是解題關鍵.11.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據夾逼法和立方根的定義進行解答;(2)先分別求得1至9中奇數的立方,然后根據末位數字是幾進行判斷即可;(3)先利用(2)中的方法判斷出個數數字,然后再利用夾逼法判斷出十位數字即可;(4)利用(3)中的方法確定出個位數字和十位數字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數;(2)∵125,343,729,∴59319的個位數字是9,則59319的立方根的個位數字是9;(3)∵,且59319的立方根是兩位數,∴59319的立方根的十位數字是3,又∵59319的立方根的個位數字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數;∵125,343,729,∴103823的個位數字是3,則103823的立方根的個位數字是7;∵,且103823的立方根是兩位數,∴103823的立方根的十位數字是4,又∵103823的立方根的個位數字是7,∴103823的立方根是47.【點睛】考查了立方根的概念和求法,解題關鍵是理解一個數的立方的個位數就是這個數的個位數的立方的個位數.12.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結果;(2)根據定義可知x<4,可得滿足題意的x的整數值;(3)根據定義對120進行連續(xù)求根整數,可得3次之后結果為1;(4)最大的正整數是255,根據操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數中,最大的是255,故答案為255.【點睛】本題考查了估算無理數的大小的應用,主要考查學生的閱讀能力和猜想能力,同時也考查了一個數的平方數的計算能力.13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據BC=AE=3,OA=1,推出OE=2,可得結論.(2)①判斷出PB=CD,即可得出結論;②根據△PEA的面積以及AE求出點P到AE的距離,結合點P的路線可得坐標.【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數;∴點P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當t=4秒時,點P的橫坐標與縱坐標互為相反數;②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設點P到AE的距離為h∴,∴h=,即點P到AE的距離為,∴點P的坐標為(0,)或(-3,).【點睛】本題考查坐標與圖形變化-平移,三角形的面積等知識,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.14.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據平行線的性質即三角形外角的性質及,可得,結合,可得即可得關于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內,∴,∵∴∴即∴解得.經檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質,角平分線的定義,靈活運用平行線的性質是解題的關鍵.15.(1)(-2,0);(-3,0);(2)z=x+y.證明見解析.【分析】(1)依據平移的性質可知BC∥x軸,BC=AE=3,然后依據點A和點C的坐標可得到點E和點D的坐標;(2過點P作PF∥BC交AB于點F,則PF∥AD,然后依據平行線的性質可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據角的和差關系進行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過點P作PF∥BC交AB于點F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點睛】此題是幾何變換綜合題,主要考查了點的坐標的特點,平移得性質,平面坐標系中點的坐標和距離的關系,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.16.(1),,;(2)或;(3)的范圍;的坐標是.【分析】(1)根據乘方、算術平方根的性質,通過列二元一次方程組并求解,得a和b的值;根據絕對值的性質,列一元一次方程并求解,從而得到答案;(2)設,根據題意列方程,結合絕對值的性質求解,得的值;再根據坐標的性質分析,即可得到答案(3)在第二象限以及的面積不大于的面積,通過列一元一次不等式并求解,即可得到m的范圍,再根據的變化規(guī)律計算,即可得到答案.【詳解】(1)∵,∴解得:∵∴∴;(2)根據題意,設∵∴∴∴∴點坐標為或;(3)∵在第二象限∴∴∵、的橫坐標相同,∴軸∵∴∵點在第二象限∴∴∴的范圍為∵當時,隨m的增大而減??;∴當時,的最大值為6∴的坐標是.【點睛】本題考查了算術平方根、乘方、二元一次方程組、一元一次方程、一元一次不等式、直角坐標系、絕對值的知識;解題的關鍵是熟練以上知識,從而完成求解.17.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.18.(1),;(2)或;(3)【分析】(1)根據非負數和為0,則每一個非負數都是0,即可求出a,b的值;(2)設直線AB與直線x=1交于點N,可得N(1,5),根據S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設直線與直線交于,設∵a=?4,b=4,∴A(?4,0),B(0,4),設直線AB的函數解析式為:y=kx+b,代入得,解得∴直線AB的函數解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當點P在OA邊上時,則2t=2,∴t=1,當點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質、一般三角形面積的和差表示、以及非負數的性質等知識點,第(2)問中用絕對值來表示動點構成的線段長度是正確解題的關鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.20.(1)6,10;(2)?!窘馕觥俊痉治觥浚?)下行-上行后將下行除以3將的系數化為1即可得方程組的解;(2)類比(1)中方法通過加減法將、的系數化為1可得.【詳解】解:(1)下行﹣上行,,故答案為:6,10;(2)所以方程組的解為.【點睛】本題主要考查矩陣法解二元一次方程組,熟練掌握加減消元法解二元一次方程組是解題的關鍵.21.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點作于點,設,,;,.,即.同理,...①,,.②由①②,得,.(3)設,,如圖所示.依題意,得,..,.,,...【點睛】此題考查了三角形面積之間的關系.(2)的關鍵是設出未知三角形的面積,然后根據等高不等底的三角形的面積的比等于底邊的比列式求解.22.(1)A的單價30元,B的單價15元(2)購買A獎品8個,購買B獎品22個,花費最少【分析】(1)設A的單價為x元,B的單價為y元,根據題意列出方程組,即可求解;(2)設購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,根據題意得到由題意可知,,,根據一次函數的性質,即可求解;【詳解】解:(1)設A的單價為x元,B的單價為y元,根據題意,得,,A的單價30元,B的單價15元;(2)設購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,由題意可知,,,,當時,W有最小值為570元,即購買A獎品8個,購買B獎品22個,花費最少;【點睛】本題考查二元一次方程組的應用,一次函數的應用;能夠根據條件列出方程組,將最優(yōu)方案轉化為一次函數性質解題是關鍵.23.(1)87和12是“黃金搭檔數”,62和49不是“黃金搭檔數”,理由見解析;(2)39或38【分析】(1)根據“黃金搭檔數”的定義分別判斷即可;(2)由已知設x,y為整數,x,z為整數,表示出,由s和t是一對“黃金搭檔數”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對“黃金搭檔數”;∵∴111與62,49數位不相同,∴62和49不是一對“黃金搭檔數”;故87和12是一對“黃金搭檔數”,62和49不是一對“黃金搭檔數”;(2)∵兩位數s和兩位數t的十位數字相同,∴設x,y為整數,x,z為整數,∴∵s和t是一對“黃金搭檔數”,∴是一個兩位數,且各個數位上的數相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數,∴不合題意,舍去;②,∵都是整數,且∴解得或,故s為39或38.【點睛】本題考查三元一次方程組的整數解,解題關鍵是理解題目中的定義,根據已知條件列出方程組.24.(1),,,;(2)的取值范圍為;(3)①;②【分析】(1)根據求出a、b、c的值,由此求解即可;(2)分當點在直線上位于軸左側時和當點在直線上位于軸右側時討論求解即可得到答案;(3)①由由得,,由此求解即可;②易得,連接,由得,,化簡得,,然后聯(lián)立求解即可.【詳解】解:(1)∵,∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)當點在直線上位于軸左側時,由題意得,,解得,,當時,,結合圖形可知,當時,;同理可得,當點在直線上位于軸右側時,,當時,,,解得,,結合圖形可知,當時,,∴的取值范圍為;(3)①由得,,化簡得,;②易得,連接,由得,,化簡得,,聯(lián)立方程組,解得,∴【點睛】本題主要考查了絕對值和算術平方根的非負性,三角形面積,解二元一次方程組,坐標與圖形,截圖的關鍵在于能夠熟練掌握相關是進行求解.25.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當時,的最大值與最小值,再根據定義判斷即可;(2)當時,得分<,分別求解在內時的最大值與最小值,再列不等式組即可得到答案;(3)當時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當時,取最大值,當時,取最小值所以代數式是的“湘一代數式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數式”,當時,的最大值是最小值是當時,當時,取最小值當時,取最大值,解得:綜上:的取值范圍是:【點睛】本題考查的是新定義情境下的不等式或不等式組的應用,理解定義列不等式(組)是解題的關鍵.26.(1)見解析;(2);(3)或【分析】(1),轉化為不等式組;(2)根據方法二的步驟解答即可;(3)根據方法二的步驟解答,得出,即可得到結論.【詳解】解:(1),轉化為不等式組;(2),不等式的左、中、右同時減去3,得,同時除以,得;(3),不等式的左、中、右同時乘以3,得,同時加5,得,的整數值或.【點睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關鍵,應用的是不等式的性質.27.(1)應該購買B類年票,理由見解析;(2)應該購買B類年票,理由見解析;(3)小明一年中進入拓展中心不低于30次【分析】(1)因為80元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數更多即可.(2)本題根據進入中心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邊坡氣象監(jiān)測與應對方案
- 木業(yè)機械安全操作培訓
- 建筑物防腐蝕風險評估方案
- 消防系統(tǒng)集成測試方案
- 2026年人力資源從業(yè)者培訓人才招聘與員工關系管理實務題目
- 消防設備合格性檢測方案
- 防腐施工圖紙審核方案
- 消防標志設置與布置方案
- 2026中醫(yī)藥廣東省實驗室誠聘科研、管理、工程技術、產業(yè)發(fā)展各領域英才117人備考題庫帶答案詳解(綜合題)
- 2026上半年海南事業(yè)單位聯(lián)考??谑忻捞m區(qū)招聘71人備考題庫(第一號)附答案詳解(滿分必刷)
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)適應性測試題庫必考題
- 安徽省六校2026年元月高三素質檢測考試物理試題(含答案)
- 2025年西南醫(yī)科大學馬克思主義基本原理概論期末考試真題匯編
- (2025版)肥胖癥合并骨關節(jié)炎專家共識課件
- T-SUCCA 01-2025 二手摩托車鑒定評估技術規(guī)范
- 2025山西焦煤集團所屬華晉焦煤井下操作技能崗退役軍人招聘50人筆試試題附答案解析
- 2026年南京交通職業(yè)技術學院單招職業(yè)技能考試題庫及答案詳解一套
- 2型糖尿病臨床路徑標準實施方案
- 2025年醫(yī)療人工智能產業(yè)報告-蛋殼研究院
- 長沙股權激勵協(xié)議書
- 問卷星使用培訓
評論
0/150
提交評論