常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁常州工學(xué)院《行業(yè)大數(shù)據(jù)可視化項(xiàng)目綜合設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、大數(shù)據(jù)在醫(yī)療健康領(lǐng)域的應(yīng)用面臨一些挑戰(zhàn),以下哪一項(xiàng)不是其面臨的挑戰(zhàn)?()A.數(shù)據(jù)隱私保護(hù)B.數(shù)據(jù)質(zhì)量問題C.技術(shù)人才短缺D.醫(yī)療數(shù)據(jù)量不足2、當(dāng)處理大規(guī)模的圖數(shù)據(jù),例如社交網(wǎng)絡(luò)關(guān)系圖,以下哪種技術(shù)或框架通常被用于圖的存儲(chǔ)和分析?()A.Neo4j圖數(shù)據(jù)庫B.HBase列式數(shù)據(jù)庫C.MySQL關(guān)系數(shù)據(jù)庫D.MongoDB文檔數(shù)據(jù)庫3、當(dāng)對(duì)大數(shù)據(jù)進(jìn)行特征工程時(shí),為了提取有意義的特征,以下哪種方法通常被采用?()A.特征縮放B.特征編碼C.特征構(gòu)建D.以上都是4、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮是一種常用的技術(shù),以下關(guān)于數(shù)據(jù)壓縮的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)壓縮可以減少數(shù)據(jù)的存儲(chǔ)空間和傳輸帶寬B.數(shù)據(jù)壓縮可以提高數(shù)據(jù)的存儲(chǔ)和傳輸效率C.數(shù)據(jù)壓縮只適用于文本數(shù)據(jù),不適用于圖像、音頻和視頻等多媒體數(shù)據(jù)D.數(shù)據(jù)壓縮需要根據(jù)數(shù)據(jù)的特點(diǎn)和應(yīng)用場(chǎng)景選擇合適的壓縮算法5、在大數(shù)據(jù)應(yīng)用中,推薦系統(tǒng)是常見的一種。以下關(guān)于協(xié)同過濾推薦算法和基于內(nèi)容的推薦算法的比較,哪一項(xiàng)是不正確的?()A.協(xié)同過濾推薦算法依賴用戶的行為數(shù)據(jù),基于內(nèi)容的推薦算法依賴物品的特征B.協(xié)同過濾推薦算法容易受到數(shù)據(jù)稀疏性的影響,基于內(nèi)容的推薦算法則相對(duì)較少C.基于內(nèi)容的推薦算法能夠?yàn)樾掠脩籼峁┯行У耐扑],協(xié)同過濾推薦算法對(duì)新用戶存在冷啟動(dòng)問題D.協(xié)同過濾推薦算法的推薦結(jié)果多樣性通常比基于內(nèi)容的推薦算法好6、在大數(shù)據(jù)的情感分析中,除了文本內(nèi)容,還可以考慮哪些因素來提高分析的準(zhǔn)確性?()A.作者的社交關(guān)系B.文本發(fā)布的時(shí)間C.文本的長度D.以上因素都可能對(duì)提高情感分析的準(zhǔn)確性有幫助7、在大數(shù)據(jù)存儲(chǔ)系統(tǒng)中,為了提高數(shù)據(jù)的可靠性,通常采用冗余技術(shù)。以下哪種冗余方式在存儲(chǔ)成本和可靠性之間取得較好的平衡?()A.鏡像B.奇偶校驗(yàn)C.糾錯(cuò)編碼D.副本8、在大數(shù)據(jù)安全領(lǐng)域,訪問控制是重要的防護(hù)手段。假設(shè)一個(gè)企業(yè)的大數(shù)據(jù)平臺(tái)包含敏感的商業(yè)數(shù)據(jù)。以下哪種訪問控制模型最適合?()A.自主訪問控制(DAC),用戶自主決定數(shù)據(jù)訪問權(quán)限B.強(qiáng)制訪問控制(MAC),基于系統(tǒng)的安全策略進(jìn)行嚴(yán)格限制C.基于角色的訪問控制(RBAC),根據(jù)用戶角色分配權(quán)限D(zhuǎn).以上三種模型結(jié)合使用,實(shí)現(xiàn)多層次的訪問控制9、在大數(shù)據(jù)環(huán)境中,為了確保數(shù)據(jù)的安全性和隱私性,以下哪種措施是至關(guān)重要的?()A.數(shù)據(jù)加密B.訪問控制C.數(shù)據(jù)備份D.數(shù)據(jù)壓縮10、在大數(shù)據(jù)的數(shù)據(jù)庫選擇中,NoSQL數(shù)據(jù)庫因其靈活的數(shù)據(jù)模型而受到關(guān)注。假設(shè)一個(gè)應(yīng)用需要存儲(chǔ)大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的讀寫性能要求較高。以下哪種NoSQL數(shù)據(jù)庫最適合?()A.文檔數(shù)據(jù)庫B.鍵值數(shù)據(jù)庫C.列族數(shù)據(jù)庫D.圖數(shù)據(jù)庫11、大數(shù)據(jù)的分析結(jié)果需要以有效的方式呈現(xiàn)給決策者。假設(shè)一個(gè)大數(shù)據(jù)分析項(xiàng)目得出了關(guān)于市場(chǎng)競(jìng)爭(zhēng)態(tài)勢(shì)的結(jié)論。以下哪種報(bào)告形式最能幫助決策者快速理解和做出決策?()A.詳細(xì)的技術(shù)報(bào)告B.簡(jiǎn)潔的摘要報(bào)告C.交互式的可視化儀表盤D.以上形式結(jié)合使用12、大數(shù)據(jù)的應(yīng)用不僅局限于企業(yè),也在科研領(lǐng)域發(fā)揮著重要作用。假設(shè)一個(gè)天文學(xué)研究項(xiàng)目,需要分析大量的天體觀測(cè)數(shù)據(jù)。以下哪種大數(shù)據(jù)技術(shù)最能幫助天文學(xué)家發(fā)現(xiàn)新的天體現(xiàn)象和規(guī)律?()A.分布式存儲(chǔ)和計(jì)算B.數(shù)據(jù)可視化C.機(jī)器學(xué)習(xí)算法D.以上技術(shù)結(jié)合使用13、在大數(shù)據(jù)存儲(chǔ)中,列式存儲(chǔ)和行式存儲(chǔ)各有優(yōu)缺點(diǎn)。假設(shè)一個(gè)數(shù)據(jù)倉庫主要用于大規(guī)模數(shù)據(jù)查詢和分析。以下關(guān)于存儲(chǔ)方式的選擇,正確的是:()A.行式存儲(chǔ),因?yàn)樽x取整行數(shù)據(jù)速度快B.列式存儲(chǔ),能夠提高特定列數(shù)據(jù)的查詢效率C.混合存儲(chǔ),根據(jù)數(shù)據(jù)特點(diǎn)動(dòng)態(tài)選擇存儲(chǔ)方式D.存儲(chǔ)方式對(duì)查詢性能影響不大,可以隨意選擇14、對(duì)于一個(gè)不斷產(chǎn)生新數(shù)據(jù)的大數(shù)據(jù)系統(tǒng),要保持?jǐn)?shù)據(jù)的實(shí)時(shí)更新和一致性,以下哪種技術(shù)或方法是關(guān)鍵?()A.增量計(jì)算B.批量處理C.全量計(jì)算D.數(shù)據(jù)緩存15、對(duì)于一個(gè)需要處理大規(guī)模圖數(shù)據(jù)的推薦系統(tǒng),以下哪種算法能夠基于用戶和物品的關(guān)系進(jìn)行推薦?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.基于圖的推薦D.以上都是16、在大數(shù)據(jù)存儲(chǔ)中,NoSQL數(shù)據(jù)庫具有很多特點(diǎn)。假設(shè)一個(gè)應(yīng)用場(chǎng)景需要快速存儲(chǔ)和檢索大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的一致性要求不高。以下哪種NoSQL數(shù)據(jù)庫可能是最佳選擇?()A.Redis(內(nèi)存數(shù)據(jù)庫)B.Cassandra(分布式寬列存儲(chǔ)數(shù)據(jù)庫)C.MongoDB(文檔數(shù)據(jù)庫)D.Alloftheabove(以上皆是)17、大數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理步驟包括數(shù)據(jù)清洗、轉(zhuǎn)換和集成等。假設(shè)我們有多個(gè)來源的異構(gòu)數(shù)據(jù)需要整合分析。以下關(guān)于數(shù)據(jù)預(yù)處理的說法,正確的是:()A.數(shù)據(jù)清洗主要是刪除重復(fù)和錯(cuò)誤的數(shù)據(jù),對(duì)缺失值可以忽略B.數(shù)據(jù)轉(zhuǎn)換包括將數(shù)據(jù)從一種格式轉(zhuǎn)換為另一種格式,以方便后續(xù)處理C.數(shù)據(jù)集成時(shí),不同數(shù)據(jù)源的數(shù)據(jù)結(jié)構(gòu)必須完全一致才能進(jìn)行整合D.數(shù)據(jù)預(yù)處理對(duì)最終的分析結(jié)果影響不大,可以簡(jiǎn)單處理18、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)質(zhì)量的評(píng)估是一個(gè)重要環(huán)節(jié)。如果數(shù)據(jù)存在大量的噪聲和異常值,會(huì)對(duì)后續(xù)的分析產(chǎn)生什么影響?()A.可能導(dǎo)致分析結(jié)果的偏差B.不會(huì)有任何影響,分析算法會(huì)自動(dòng)處理C.會(huì)提高分析的效率和準(zhǔn)確性D.只會(huì)影響可視化效果,不影響分析模型19、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)預(yù)處理通常包括數(shù)據(jù)清洗、轉(zhuǎn)換和集成等步驟。如果數(shù)據(jù)來自多個(gè)不同的數(shù)據(jù)源,且數(shù)據(jù)格式不一致,首先需要進(jìn)行的操作是?()A.數(shù)據(jù)清洗B.數(shù)據(jù)轉(zhuǎn)換C.數(shù)據(jù)集成D.數(shù)據(jù)采樣20、大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用包括信用風(fēng)險(xiǎn)評(píng)估、市場(chǎng)風(fēng)險(xiǎn)預(yù)測(cè)、操作風(fēng)險(xiǎn)監(jiān)測(cè)等,以下關(guān)于大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中應(yīng)用的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)可以用于信用風(fēng)險(xiǎn)評(píng)估,提高金融機(jī)構(gòu)的風(fēng)險(xiǎn)管理能力B.大數(shù)據(jù)可以用于市場(chǎng)風(fēng)險(xiǎn)預(yù)測(cè),提高金融機(jī)構(gòu)的盈利能力C.大數(shù)據(jù)可以用于操作風(fēng)險(xiǎn)監(jiān)測(cè),加強(qiáng)金融機(jī)構(gòu)的內(nèi)部控制D.大數(shù)據(jù)在金融風(fēng)險(xiǎn)管理中的應(yīng)用只局限于傳統(tǒng)金融機(jī)構(gòu),不能應(yīng)用于互聯(lián)網(wǎng)金融21、在處理大數(shù)據(jù)時(shí),常常需要使用分布式計(jì)算框架來提高計(jì)算效率。假設(shè)有一個(gè)計(jì)算任務(wù)需要對(duì)數(shù)十億條數(shù)據(jù)進(jìn)行復(fù)雜的計(jì)算,以下哪種分布式計(jì)算框架在處理這種大規(guī)模數(shù)據(jù)計(jì)算時(shí)具有優(yōu)勢(shì)?()A.MPI(MessagePassingInterface)B.OpenMPC.CUDA(ComputeUnifiedDeviceArchitecture)D.Alloftheabove(以上皆是)22、在大數(shù)據(jù)分析中,為了評(píng)估模型的泛化能力,以下哪種方法經(jīng)常被使用?()A.交叉驗(yàn)證B.留出法C.自助法D.以上都是23、在大數(shù)據(jù)分析中,異常檢測(cè)是一項(xiàng)重要任務(wù)。如果數(shù)據(jù)分布呈現(xiàn)明顯的正態(tài)分布,以下哪種方法常用于檢測(cè)異常值?()A.基于距離的方法B.基于密度的方法C.3σ原則D.以上都不是24、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行聚類分析,并且數(shù)據(jù)分布較為復(fù)雜,以下哪種聚類算法可能更有效?()A.K-MeansB.DBSCANC.層次聚類D.以上都有可能25、在大數(shù)據(jù)的背景下,數(shù)據(jù)治理變得越來越重要。假設(shè)一個(gè)組織擁有多個(gè)部門,每個(gè)部門都有自己的數(shù)據(jù)管理方式和標(biāo)準(zhǔn)。以下哪種數(shù)據(jù)治理策略最能促進(jìn)數(shù)據(jù)的共享和一致性?()A.建立統(tǒng)一的數(shù)據(jù)治理框架和標(biāo)準(zhǔn)B.讓各部門自行管理數(shù)據(jù),互不干擾C.只關(guān)注核心業(yè)務(wù)數(shù)據(jù)的治理D.定期清理不需要的數(shù)據(jù)26、大數(shù)據(jù)的處理通常需要分布式計(jì)算框架來提高效率。假設(shè)有一個(gè)需要對(duì)海量文本數(shù)據(jù)進(jìn)行詞頻統(tǒng)計(jì)的任務(wù),數(shù)據(jù)量達(dá)到數(shù)百TB。以下哪種分布式計(jì)算框架最適合處理這種大規(guī)模的數(shù)據(jù)處理任務(wù)?()A.HadoopMapReduceB.SparkC.FlinkD.Storm27、大數(shù)據(jù)分析中的數(shù)據(jù)降維技術(shù)常用于處理高維數(shù)據(jù)。假設(shè)我們有一個(gè)包含眾多特征的數(shù)據(jù)集。以下哪種數(shù)據(jù)降維方法較為常見?()A.主成分分析(PCA),提取主要成分B.因子分析,找出潛在的共同因子C.線性判別分析(LDA),用于分類問題D.以上方法都經(jīng)常用于數(shù)據(jù)降維28、大數(shù)據(jù)的發(fā)展對(duì)數(shù)據(jù)管理提出了新的要求。假設(shè)一個(gè)企業(yè)的數(shù)據(jù)量呈指數(shù)增長,以下關(guān)于數(shù)據(jù)管理策略的調(diào)整,正確的是:()A.繼續(xù)依賴傳統(tǒng)的數(shù)據(jù)庫管理系統(tǒng),增加硬件投入B.采用分布式的數(shù)據(jù)管理架構(gòu),如NoSQL數(shù)據(jù)庫C.減少數(shù)據(jù)的收集和存儲(chǔ),只保留關(guān)鍵數(shù)據(jù)D.不改變現(xiàn)有管理策略,等待技術(shù)成熟后再進(jìn)行調(diào)整29、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的分布和概率密度,以下哪種圖表類型通常被使用?()A.概率密度圖B.核密度估計(jì)圖C.累積分布函數(shù)圖D.以上都是30、在大數(shù)據(jù)的數(shù)據(jù)分析中,數(shù)據(jù)探索性分析(EDA)是重要的第一步。假設(shè)我們有一個(gè)新的數(shù)據(jù)集,以下哪個(gè)不是EDA的主要目的?()A.了解數(shù)據(jù)的分布和特征B.發(fā)現(xiàn)數(shù)據(jù)中的異常值C.直接建立數(shù)據(jù)的預(yù)測(cè)模型D.確定數(shù)據(jù)的質(zhì)量和缺失值情況二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用Java語言和Solr搜索服務(wù)器,開發(fā)一個(gè)系統(tǒng)來搜索和索引大量的電商產(chǎn)品評(píng)論。要求能夠根據(jù)用戶輸入的關(guān)鍵詞和情感傾向準(zhǔn)確返回相關(guān)評(píng)論。2、(本題5分)用Python編寫一個(gè)程序,使用Hadoop生態(tài)系統(tǒng)中的SparkSQL對(duì)大規(guī)模的用戶消費(fèi)行為數(shù)據(jù)進(jìn)行分析,找出用戶的消費(fèi)偏好和消費(fèi)習(xí)慣。3、(本題5分)用Python結(jié)合Flink框架,處理一個(gè)不斷生成的數(shù)據(jù)流,該數(shù)據(jù)流包含網(wǎng)站的訪問日志,需要實(shí)時(shí)計(jì)算每個(gè)頁面的訪問頻率,并將結(jié)果存儲(chǔ)到數(shù)據(jù)庫中。4、(本題5分)給定一個(gè)包含社交媒體用戶關(guān)注和取消關(guān)注數(shù)據(jù)的數(shù)據(jù)集,分析用戶關(guān)系的穩(wěn)定性和變化規(guī)律。5、(本題5分)使用Java語言和Elasticsearch搜索引擎,開發(fā)一個(gè)系統(tǒng)來快速搜索和檢索大量的學(xué)術(shù)論文。數(shù)據(jù)包括論文標(biāo)題、摘要、作者等字段,要求能夠根據(jù)關(guān)鍵詞和研究領(lǐng)域準(zhǔn)確返回相關(guān)論文。三、簡(jiǎn)答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論