難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評試題(含答案解析版)_第1頁
難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評試題(含答案解析版)_第2頁
難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評試題(含答案解析版)_第3頁
難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評試題(含答案解析版)_第4頁
難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評試題(含答案解析版)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④2、如圖,在長方形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當(dāng)△CEF為直角三角形時,則BE的長是()A.4 B.3 C.4或8 D.3或63、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.4、如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.105、如圖,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=,則點C的坐標(biāo)為()A.(,1) B.(1,1) C.(1,) D.(+1,1)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.2、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.3、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.4、如圖,在正方形ABCD中,點O在內(nèi),,則的度數(shù)為______.5、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.三、解答題(5小題,每小題10分,共計50分)1、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線AC的三等分點,連接BE,DF.證明BE=DF.2、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設(shè)運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關(guān)于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當(dāng)△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.3、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點E,交BC的延長線于點F.點E恰是CD的中點.求證:(1)△ADE≌△FCE;(2)BE⊥AF.4、如圖,在矩形中,,,且四邊形是一個正方形,試問點F是的黃金分割點嗎?請說明理由.(補全解題過程)5、已知:在中,點、點、點分別是、、的中點,連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點,連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.

-參考答案-一、單選題1、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進(jìn)行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.2、D【解析】【分析】當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時連接,先利用勾股定理計算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時,只能得到,所以點A、F、C共線,即沿折疊,使點B落在對角線上的點F處,則,,可計算出然后利用勾股定理求解即可;②當(dāng)點F落在邊上時.此時為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時,如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點B落在點F處,∴,BE=EF,當(dāng)為直角三角形時,只能得到,∴∴點A、F、C共線,即△ABE沿折疊,使點B落在對角線上的點F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點F落在邊上時,如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.3、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.4、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質(zhì)得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點的坐標(biāo).【詳解】:作CD⊥x軸于點D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負(fù)值舍去),則點C的坐標(biāo)為(1,1),故選:B.【點睛】此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出OD=CD=1是解決問題的關(guān)鍵.二、填空題1、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.2、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進(jìn)行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.3、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關(guān)系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關(guān)系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當(dāng)與相交時,如下圖所示:,,,情況2:當(dāng)與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質(zhì),熟練運用平行關(guān)系+角平分線證邊相等,是解決本題的關(guān)鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒考慮仔細(xì),會漏掉一種情況.4、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).5、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.三、解答題1、見詳解【分析】由題意易得AB=CD,AB∥CD,AE=CF,則有∠BAE=∠DCF,進(jìn)而問題可求證.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵E,F(xiàn)是對角線AC的三等分點,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【點睛】本題主要考查平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據(jù)平行線的性質(zhì)可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當(dāng)BP=BC=4cm時,當(dāng)PC=BC=4cm時,當(dāng)PC=PB時三種情況討論求解即可;(3)分當(dāng)∠PAE=90°時,當(dāng)∠APE=90°時,當(dāng)∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三種情況:①當(dāng)BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當(dāng)PC=BC=4cm時,由勾股定理,即,解得;③當(dāng)PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當(dāng)t=1或或時,△PBC是等腰三角形;(3)∵D關(guān)于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當(dāng)∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當(dāng)∠APE=90°時,∴∠EPD=90°∵D、E關(guān)于直線CP對稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當(dāng)∠AEP=90°時,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時或.【點睛】本題主要考查了軸對稱的性質(zhì),角平分線的定義,平行線的性質(zhì),等腰三角形的性質(zhì),勾股定理,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠利用分類討論的思想求解.3、(1)見解析;(2)見解析.【分析】(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質(zhì)證出AB=BF,由全等三角形的性質(zhì)得出AE=FE,由等腰三角形的性質(zhì)可得出結(jié)論.【詳解】證明:(1)∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠D=∠ECF,∵E為CD的中點,∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四邊形ABCD為平行四邊形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【點睛】本題主要考查了平行四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論