難點詳解京改版數(shù)學(xué)9年級上冊期中試題含答案詳解(綜合題)_第1頁
難點詳解京改版數(shù)學(xué)9年級上冊期中試題含答案詳解(綜合題)_第2頁
難點詳解京改版數(shù)學(xué)9年級上冊期中試題含答案詳解(綜合題)_第3頁
難點詳解京改版數(shù)學(xué)9年級上冊期中試題含答案詳解(綜合題)_第4頁
難點詳解京改版數(shù)學(xué)9年級上冊期中試題含答案詳解(綜合題)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、在下列關(guān)于x的函數(shù)中,一定是二次函數(shù)的是(

)A.y=x2

B.y=ax2+bx+c

C.y=8x

D.y=x2(1+x)2、如圖,四邊形OABC是平行四邊形,點A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數(shù)y=(x>0)的圖象經(jīng)過C,D兩點,直線CD與y軸相交于點E,則點E的坐標(biāo)為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)3、如圖,已知中,,則的值為(

)A. B. C. D.4、如圖,點在反比例函數(shù)圖象上,軸于點,是的中點,連接,,若的面積為2,則(

)A.4 B.8 C.12 D.165、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當(dāng)四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.6、二次函數(shù)的頂點坐標(biāo)為,圖象如圖所示,有下列四個結(jié)論:①;②;③④,其中結(jié)論正確的個數(shù)為(

)A.個 B.個 C.個 D.個二、多選題(7小題,每小題2分,共計14分)1、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+172、下列四組圖形中,是相似圖形的是(

)A. B.C. D.3、如果α、β都是銳角,下面式子中不正確的是(

)A.sin(α+β)=sinα+sinβ B.cos(α+β)=時,α+β=60°C.若α≥β時,則cosα≥cosβ D.若cosα>sinβ,則α+β>90°4、二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論中正確的有()A.a(chǎn)bc>0 B.3a+c<0 C.a(chǎn)+b≥am2+bm D.a(chǎn)﹣b+c>0 E.若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=25、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當(dāng)x<1時,y隨x的增大而減小B.若圖象與x軸有交點,則a≥-4C.當(dāng)a=3時,不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-36、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(

)A.3.6B.C.D.2.47、如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論,其中正確的結(jié)論是()A.AC=FG B.S△FAB:S四邊形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ?AC第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,已知在平面直角坐標(biāo)系中,直線分別交軸,軸于點和點,分別交反比例函數(shù),的圖象于點和點,過點作軸于點,連結(jié).若的面積與的面積相等,則的值是_____.2、若拋物線的圖像與軸有交點,那么的取值范圍是________.3、若函數(shù)是反比例函數(shù),那么k的值是_____.4、中,,,,則邊的長為_______.5、已知二次函數(shù),當(dāng)分別取時,函數(shù)值相等,則當(dāng)取時,函數(shù)值為______.6、如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分面積為___.7、寫出一個滿足“當(dāng)時,隨增大而減小”的二次函數(shù)解析式______.四、解答題(6小題,每小題10分,共計60分)1、如圖,公路為東西走向,在點北偏東方向上,距離千米處是村莊,在點北偏東方向上,距離千米處是村莊;要在公路旁修建一個土特產(chǎn)收購站(取點在上),使得,兩村莊到站的距離之和最短,請在圖中作出的位置(不寫作法)并計算:(1),兩村莊之間的距離;(2)到、距離之和的最小值.(參考數(shù)據(jù):sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75計算結(jié)果保留根號.)2、如圖1,E是等邊ABC的邊BC上一點(不與點B,C重合),連接AE,以AE為邊向右作等邊AEF,連接CF.已知ECF的面積(S)與BE的長(x)之間的函數(shù)關(guān)系如圖2所示(P為拋物線的頂點)﹒(1)當(dāng)ECF的面積最大時,求∠FEC的度數(shù);(2)求等邊ABC的邊長.3、端午節(jié)是我國入選世界非物質(zhì)文化遺產(chǎn)的傳統(tǒng)節(jié)日,端午節(jié)吃粽子是中華民族的傳統(tǒng)習(xí)俗.市場上豆沙粽的進(jìn)價比豬肉粽的進(jìn)價每盒便宜10元,某商家用8000元購進(jìn)的豬肉粽和用6000元購進(jìn)的豆沙粽盒數(shù)相同.在銷售中,該商家發(fā)現(xiàn)豬肉粽每盒售價50元時,每天可售出100盒;每盒售價提高1元時,每天少售出2盒.(1)求豬肉粽和豆沙粽每盒的進(jìn)價;(2)設(shè)豬肉粽每盒售價x元表示該商家每天銷售豬肉粽的利潤(單位:元),求y關(guān)于x的函數(shù)解析式并求最大利潤.4、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.5、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當(dāng)BD的長是多少時,圖中的兩個直角三角形相似?6、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標(biāo).-參考答案-一、單選題1、A【解析】【分析】根據(jù)二次函數(shù)的定義:y=ax2+bx+c(a≠0.a(chǎn)是常數(shù)),可得答案.【詳解】解:A、y=x2是二次函數(shù),故A符合題意;B、a=0時不是二次函數(shù),故B不符合題意,C、y=8x是一次函數(shù),故C不符合題意;D、y=x2(1+x)不是二次函數(shù),故D不符合題意;故選A.【考點】本題考查了二次函數(shù)的定義,利用二次函數(shù)的定義是解題關(guān)鍵,注意a是不等于零的常數(shù).2、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點C、D的坐標(biāo),進(jìn)而求得直線CD的解析式,最后計算該直線與y軸交點坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時,,∴點E的坐標(biāo)為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質(zhì)、運用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過C、D兩點,得出關(guān)于x的方程是解決問題的關(guān)鍵.3、D【解析】【分析】根據(jù)勾股定理,可得BC的長,根據(jù),可得答案.【詳解】解:在中,由勾股定理,得,∴.故選D【考點】本題考查了銳角正切值的求法,利用正切函數(shù)等于對邊比鄰邊是解題關(guān)鍵.4、B【解析】【分析】根據(jù)三角形中線的性質(zhì)得出,然后根據(jù)反比例函數(shù)的幾何意義得解.【詳解】解:∵點C是OB的中點,的面積為2,∴,∵軸于點,∴,∴,∴,故選:B.【考點】本題考查了反比例函數(shù)的幾何意義以及三角形中線的性質(zhì),熟知反比例函數(shù)的幾何意義是解本題的關(guān)鍵.5、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.6、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對每一項逐一進(jìn)行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運用所學(xué)知識是解題關(guān)鍵.二、多選題1、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.2、ABC【解析】【分析】根據(jù)相似圖形的定義,對選項進(jìn)行一一分析,排除錯誤答案.【詳解】解:A、形狀相同,但大小不同,符合相似形的定義,故符合題意;B、形狀相同,但大小不同,符合相似形的定義,故符合題意;C、形狀相同,但大小不同,符合相似形的定義,故符合題意;D、形狀不相同,不符合相似形的定義,故不符合題意;故選:ABC.【考點】本題考查的是相似形的定義,結(jié)合圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.3、ACD【解析】【分析】可以選擇特殊值代入,進(jìn)行分析.【詳解】解:A中,如α=30°,β=60°時,而sin(α+β)=sin90°=1,sin30°+sin60°=,顯然錯誤,符合題意;B中,根據(jù)cos60°=,正確,不符合題意;C中,如α=60°,β=30°時,而cos60°=,cos30°=,顯然錯誤,符合題意;D中,如cos30°>sin45°,錯誤,符合題意.故選:ACD.【考點】本題考查了特殊角的三角函數(shù)值,記憶特殊角的三角函數(shù)值是解題的關(guān)鍵.4、BCE【解析】【分析】根據(jù)二次函數(shù)開口方向、對稱軸和函數(shù)圖像與坐標(biāo)軸的知識點逐一判斷即可;【詳解】∵拋物線開口向下,∴,∵拋物線的對稱軸為直線,∴,∵拋物線于x軸的交點在x軸上方,∴,∴,故A錯誤;∵拋物線于x軸的一個交點在與之間,∴當(dāng)時,,即,故D錯誤;∴,即,故B正確;∵時,y有最大值,∴,即,故C正確;∵,∴,∴,而,∴,∴,故E正確;故選BCE.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合一元二次方程根與系數(shù)的關(guān)系判定是解題的關(guān)鍵.5、ACD【解析】【分析】A、此函數(shù)在對稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點,就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對稱軸:直線x=2,A、當(dāng)x<1時,y隨x的增大而減小,故該選項正確;B、當(dāng)Δ=b2?4ac=16?4a≥0,即a≤4時,二次函數(shù)和x軸有交點,該選項錯誤;C、當(dāng)a=3時,則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個單位,再向左平移3個單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項正確.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.6、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.7、ABCD【解析】【分析】根據(jù)正方形的性質(zhì)及垂直的定義證明△CAD≌△GFA,即可判斷A選項;證明四邊形CBFG是矩形,由此判斷B選項;根據(jù)矩形的性質(zhì)及等腰直角三角形的性質(zhì)即可判斷C選項;證明△CAD∽△EFQ,即可判斷D選項.【詳解】解:∵四邊形ADEF為正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A選項正確;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四邊形CBFG是平行四邊形,∵,∴四邊形CBFG是矩形,∴S△FAB:S四邊形CBFG=1:2,故B選項正確;∵四邊形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C選項正確;∵四邊形ADEF為正方形,∴,AD=EF,∴,∵四邊形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ?AC,故D選項正確;故選:ABCD.【考點】此題考查矩形的判定及性質(zhì),等腰直角三角形的性質(zhì),正方形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),熟記各知識點并熟練應(yīng)用解決問題是解題的關(guān)鍵.三、填空題1、2.【解析】【分析】過點作軸于.根據(jù)k的幾何意義,結(jié)合三角形面積之間的關(guān)系,求出交點D的坐標(biāo),代入即可求得k的值.【詳解】如圖,過點作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,

∴,∴.易證,從而,即的橫坐標(biāo)為,而在直線上,∴∴.故答案為2【考點】本題是一次函數(shù)與反比例函數(shù)的交點問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點問題,關(guān)鍵是根據(jù)兩個三角形的面積相等列出k的方程.2、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.3、0【解析】【分析】直接利用反比例函數(shù)的定義得出答案.【詳解】∵函數(shù)是反比例函數(shù),∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合題意舍去)∴k=0.故答案為:0.【考點】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義,是解題的關(guān)鍵.4、2【解析】【分析】根據(jù)正切定義得到,則可設(shè)AB=x,BC=2x,利用勾股定理計算出AC=x,所以x=,解得x=1,然后計算2x即可得到BC的長.【詳解】解:如圖,∵∠B=90°,∴,設(shè)AB=x,則BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案為:2.【考點】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.5、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關(guān)系,從而可以得到2x1+2x2的值,進(jìn)而可以求得當(dāng)x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當(dāng)x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.6、【解析】【分析】設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積-四邊形ADEB′的面積,列式計算即可得解.【詳解】解:如圖,設(shè)與的交點為,連接,在和中,,,,∵旋轉(zhuǎn)角為30°,,,,∴陰影部分的面積=,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.7、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).四、解答題1、(1)M,N兩村莊之間的距離為千米;(2)村莊M、N到P站的最短距離和是5千米.【解析】【分析】(1)作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.求出DN,DM,利用勾股定理即可解決問題.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.【詳解】解:作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN?sin∠NAB=10?sin36.5°=6,AE=AN?cos∠NAB=10?cos36.5°=8,過M作MC⊥AB于點C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA?sin∠AMB=MA?sin36.5°=3,MC=MA?cos∠AMC=MA?cos36.5°=4,過點M作MD⊥NE于點D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN==,即M,N兩村莊之間的距離為千米.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′==5(千米)∴村莊M、N到P站的最短距離和是5千米.【考點】本題考查解直角三角形,軸對稱變換等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.2、(1)30°;(2)【解析】【分析】(1)由△ABE≌△ACF得BE=CF,用x的代數(shù)式表示S,得到E為BC中點時S最大,從而可求∠FEC度數(shù);(2)根據(jù)△ECF的最大面積是2列方程即可得答案.【詳解】解:(1)設(shè)等邊△ABC邊長是,過F作FD⊥BC于D,∵等邊△ABC,等邊△AEF,∴AB=AC,AE=AF,∠BAC=∠ABC=∠ACB=∠EAF=∠AEF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF(SAS),∴CF=BE=x,∠ACF=∠ABE=60°,∠FCD=180°﹣∠ACB﹣∠ACF=60°,F(xiàn)D=CF?sin60°=,S△ECF=∴當(dāng)△ECF的面積最大時x=-時,即E是BC的中點,S△ECF的最大值為∵E是BC的中點∴AE⊥BC,∠AEB=90°∴∠FEC=180°﹣∠AEB﹣∠AEF=30°(2)由圖可知S△ECF的最大值是2,∴=2解得a=4或a=-4(舍去)∴等邊△ABC的邊長為4.【考點】本題考查等邊三角形及二次函數(shù)的綜合知識,解題關(guān)鍵是證明△ABE≌△ACF,用x的代數(shù)式表示△ECF的面積.3、(1)豬肉粽每盒進(jìn)價40元,豆沙粽每盒進(jìn)價30元;(2),最大利潤為1750元【解析】【分析】(1)設(shè)豬肉粽每盒進(jìn)價a元,則豆沙粽每盒進(jìn)價元,根據(jù)某商家用8000元購進(jìn)的豬肉粽和用6000元購進(jìn)的豆沙粽盒數(shù)相同列方程計算即可;(2)根據(jù)題意當(dāng)時,每天可售100盒,豬肉粽每盒售x元時,每天可售盒,列出二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)計算最大值即可.【詳解】解:(1)設(shè)豬肉粽每盒進(jìn)價a元,則豆沙粽每盒進(jìn)價元.則解得:,經(jīng)檢驗是方程的解.∴豬肉粽每盒進(jìn)價40元,豆沙粽每盒進(jìn)價30元.答:豬肉粽每盒進(jìn)價40元,豆沙粽每盒進(jìn)價30元.(2)由題意得,當(dāng)時,每天可售100盒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論