難點解析-四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析試題(詳解版)_第1頁
難點解析-四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析試題(詳解版)_第2頁
難點解析-四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析試題(詳解版)_第3頁
難點解析-四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析試題(詳解版)_第4頁
難點解析-四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析試題(詳解版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川遂寧二中7年級數(shù)學下冊第四章三角形必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,122、如圖,點,在線段上,與全等,其中點與點,點與點是對應頂點,與交于點,則等于()A. B. C. D.3、如圖,△ABC中,D,E分別為BC,AD的中點,若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.84、如圖,AB=AC,點D、E分別在AB、AC上,補充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC5、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.6、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°7、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.8、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.9、以下列長度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,10、如圖,為估計池塘岸邊A、B兩點的距離,小方在池塘的一側選取一點O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,ABDC,ADBC,AC與BD交于點O,EF經(jīng)過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.2、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.3、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.4、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.5、如圖,兩根旗桿CA,DB相距20米,且CA⊥AB,DB⊥AB,某人從旗桿DB的底部B點沿BA走向旗桿CA底部A點.一段時間后到達點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角∠CMD=90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為每秒2米,則這個人從點B到點M所用時間是_____秒.6、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.7、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當AC=6,BC=8,AB=10時,則△CEF的周長為_____.8、某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;③從D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.9、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.10、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點M,連接OM.下列結論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結論是_____.(填序號)三、解答題(6小題,每小題10分,共計60分)1、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉到如圖(2)位置時,BD、AB、CB滿足什么樣關系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉到如圖(3)位置時,BD、AB、CB滿足什么樣關系式,請直接寫出你的結論.2、如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.(1)求證:BE=CD;(2)F為AD上一點,DF=CD,連接BF,若AD=5,BE=2,求△BDG的面積3、已知:如圖,若ABCD,AB=CD且BE=CF.求證:AE=DF.4、如圖,在中,,,,BD是的角平分線,點E在AB邊上,.求的周長.5、某中學八年級學生進行課外實踐活動,要測池塘兩端A,B的距離,因無法直接測量,經(jīng)小組討論決定,先在地上取一個可以直接到達A,B兩點的點O,連接AO并延長到點C,使AO=CO;連接BO并延長到點D,使BO=DO,連接CD并測出它的長度.(1)根據(jù)題中描述,畫出圖形;(2)CD的長度就是A,B兩點之間的距離,請說明理由.6、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.-參考答案-一、單選題1、C【分析】根據(jù)三角形三邊關系定理:三角形兩邊之和大于第三邊,進行判定即可.【詳解】解:A、∵,∴不能構成三角形;B、∵,∴不能構成三角形;C、∵,∴能構成三角形;D、∵,∴不能構成三角形.故選:C.【點睛】本題主要考查運用三角形三邊關系判定三條線段能否構成三角形的情況,理解構成三角形的三邊關系是解題關鍵.2、D【分析】根據(jù)點與點,點與點是對應頂點,得到,根據(jù)全等三角形的性質解答.【詳解】解:與全等,點與點,點與點是對應頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質,熟練掌握全等三角形的對應邊相等,對應角相等是解題的關鍵.3、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點睛】本題考查的是三角形的中線的性質,三角形一邊上的中線把原三角形分成的兩個三角形的面積相等.4、C【分析】根據(jù)全等三角形的判定定理進行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關鍵.5、C【分析】根據(jù)三角形的三邊關系可得,再解不等式可得答案.【詳解】解:設三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關系,解題的關鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.6、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質與判定,三角形外角的性質,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.7、D【分析】設第三根木棒長為x厘米,根據(jù)三角形的三邊關系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.8、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關鍵.9、C【分析】根據(jù)三角形三條邊的關系計算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點睛】本題考查了三角形三條邊的關系,熟練掌握三角形三條邊的關系是解答本題的關鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.10、A【分析】根據(jù)三角形的三邊關系得出5<AB<25,根據(jù)AB的范圍判斷即可.【詳解】解:連接AB,根據(jù)三角形的三邊關系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點睛】本題主要考查對三角形的三邊關系定理的理解和掌握,能正確運用三角形的三邊關系定理是解此題的關鍵.二、填空題1、6【分析】根據(jù)平行線的性質得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質定理,平行線的性質等知識點,能熟記全等三角形的判定定理和性質定理是解此題的關鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應邊相等,對應角相等.2、2或6或2【分析】設BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質,利用分類討論思想是解答此題的關鍵.3、2【分析】(1)根據(jù)路程=速度×時間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應用,熟練掌握全等三角形的判定與性質是解答的關鍵.4、110°【分析】先根據(jù)全等三角形的性質得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點睛】本題考查了全等三角形的性質:全等三角形的對應邊相等;全等三角形的對應角相等.5、4【分析】先說明,再利用證明,然后根據(jù)全等三角形的性質可得米,再根據(jù)線段的和差求得BM的長,最后利用時間=路程÷速度計算即可.【詳解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵該人的運動速度,他到達點M時,運動時間為s.故答案為:4.【點睛】本題主要考查了全等三角形的判定與性質,根據(jù)題意證得是解答本題的關鍵.6、【分析】如圖(見解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質等知識點,正確找出兩個全等三角形是解題關鍵.7、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質證明EF=EM+EN,即可得出結論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質定理,正方形的判定,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問.8、5【分析】將題目中的實際問題轉化為數(shù)學問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應用,熟練應用全等三角形的判定定理和性質是解題關鍵.9、75【分析】設CB與ED交點為G,依據(jù)平行線的性質,即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質,得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質以及三角形外角性質,解題時注意:兩條平行線被第三條直線所截,同位角相等.10、①②④【分析】由證明得出,,①正確;由全等三角形的性質得出,由三角形的外角性質得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對應邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯誤;即可得出結論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設平分,則,在與中,,,,,,而,故③錯誤;所以其中正確的結論是①②④.故答案為:①②④.【點睛】本題考查了全等三角形的判定與性質、三角形的外角性質、角平分線的判定等知識;證明三角形全等是解題的關鍵.三、解答題1、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據(jù)等角的余角相等及等式的性質可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如圖(3)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【點睛】本題考查了三角形全等的判定和性質,等腰直角三角形的判定和性質等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質是全等三角形的對應邊相等,對應角相等.2、(1)見解析;(2)【分析】(1)根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質求出∠ACD=∠CBE,根據(jù)AAS證明△BCE≌△CAD,則可得出結論;(2)證明△FDG≌△BEG(AAS),由全等三角形的性質得出EG=DG,求出DG的長,則可得出答案.【詳解】解:(1)證明:∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠ECB+∠ACD=90°,∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)證明:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵DF=CD∴FD=BE∵AD⊥CE,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論