版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省太倉市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對(duì)角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10022、在自習(xí)課上,小芳同學(xué)將一張長方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對(duì)角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm23、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.4、若直角三角形的三邊長分別為2,4,x,則x的可能值有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖,一棵大樹在一次強(qiáng)臺(tái)風(fēng)中距地面5m處折斷,倒下后樹頂端著地點(diǎn)A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m6、如圖,P是等邊三角形內(nèi)的一點(diǎn),且,,,以為邊在外作,連接,則以下結(jié)論中不正確的是(
)A. B. C. D.7、下面各圖中,不能證明勾股定理正確性的是()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.2、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個(gè)長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.3、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.4、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長為10米,問船向岸邊移動(dòng)了__米.5、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.6、已知a、b、c是一個(gè)三角形的三邊長,如果滿足,則這個(gè)三角形的形狀是_______.7、如圖,臺(tái)風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.8、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)落在CD的延長線上.若,,則的面積為__________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.2、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.3、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.4、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A,H,B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請(qǐng)通過計(jì)算加以說明;(2)求原來的路線AC的長.5、勾股定理的證明方法是多樣的,其中“面積法”是常用的方法.小麗發(fā)現(xiàn):當(dāng)四個(gè)全等的直角三角形如圖擺放時(shí),可以用“面積法”來證明勾股定理.請(qǐng)寫出勾股定理的內(nèi)容,并利用給定的圖形進(jìn)行證明.6、勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,也是初中學(xué)生以后解決數(shù)學(xué)問題和實(shí)際問題中常常運(yùn)用到的重要知識(shí),因此學(xué)好勾股定理非常重要.學(xué)習(xí)數(shù)學(xué)“不僅要知其然,更要知其所以然”,所以,我們要學(xué)會(huì)勾股定理的各種證明方法.請(qǐng)你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點(diǎn)E,且△ABE≌△BCD.求證:AB2=BE2+AE2.7、如圖,把長方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說明理由.-參考答案-一、單選題1、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對(duì)角線長1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.4、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時(shí)要對(duì)x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時(shí),x2=22+42=20,所以x=2;當(dāng)4為斜邊時(shí),x2=16-4=12,x=2.故選B.點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.5、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.6、C【解析】【分析】根據(jù)△ABC是等邊三角形,得出∠ABC=60°,根據(jù)△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據(jù)勾股定理的逆定理即可判斷B;根據(jù)△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點(diǎn)】本題是三角形綜合題,考查了全等三角形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理,解決本題的關(guān)鍵是綜合應(yīng)用以上知識(shí).7、C【解析】【分析】把各圖中每一部分的面積和整體的面積分別列式表示,根據(jù)每一部分的面積之和等于整體的面積,分別化簡,再根據(jù)化簡結(jié)果即可解答.【詳解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;C、根據(jù)圖形不能證明勾股定理,故本選項(xiàng)符合題意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;故選C.【考點(diǎn)】本題考查勾股定理的證明,解題的關(guān)鍵是利用構(gòu)圖法來證明勾股定理.二、填空題1、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個(gè)三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點(diǎn)】本題考查勾股定理以及逆定理,三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.2、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.3、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.54、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計(jì)算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.5、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.6、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.7、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.8、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.三、解答題1、【解析】【分析】設(shè)秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.2、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點(diǎn)】此題主要考查了勾股數(shù),關(guān)鍵是掌握勾股數(shù)定義.3、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn)A',連接A'B交MN于點(diǎn)P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點(diǎn)】本題考查軸對(duì)稱-最短問題,勾股定理,題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱解決最短問題.4、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點(diǎn)到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年白銀市特崗教師招聘考試真題題庫附答案
- 2024年黑河學(xué)院輔導(dǎo)員招聘?jìng)淇碱}庫附答案
- 2025天津市公務(wù)員考試數(shù)量關(guān)系專項(xiàng)練習(xí)題及答案參考
- 水盆工保密意識(shí)測(cè)試考核試卷含答案
- 電法勘探工崗前成果考核試卷含答案
- 幻燈機(jī)與投影機(jī)維修工安全實(shí)操考核試卷含答案
- 排水管道工安全行為能力考核試卷含答案
- 固體化妝品制造工安全知識(shí)能力考核試卷含答案
- 硝酸銨結(jié)晶造粒工保密競(jìng)賽考核試卷含答案
- 2024年湖北大學(xué)知行學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 學(xué)前教育-幼兒園戶外建構(gòu)游戲安全與對(duì)策的研究論文
- 門急診病歷質(zhì)控檢查評(píng)分標(biāo)準(zhǔn)
- 04S519小型排水構(gòu)筑物1
- 光纖激光打標(biāo)機(jī)說明書
- 勞動(dòng)者個(gè)人職業(yè)健康監(jiān)護(hù)檔案
- 《兩角和與差的正弦、余弦、正切公式》示范公開課教學(xué)PPT課件【高中數(shù)學(xué)人教版】
- 治理現(xiàn)代化下的高校合同管理
- 境外宗教滲透與云南邊疆民族地區(qū)意識(shí)形態(tài)安全研究
- GB/T 28920-2012教學(xué)實(shí)驗(yàn)用危險(xiǎn)固體、液體的使用與保管
- GB/T 26389-2011衡器產(chǎn)品型號(hào)編制方法
- GB/T 16588-2009帶傳動(dòng)工業(yè)用多楔帶與帶輪PH、PJ、PK、PL和PM型:尺寸
評(píng)論
0/150
提交評(píng)論