版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、下圖是由六個相同的小正方體搭成的幾何體,這個幾何體從正面看到的圖形是()A.A B.B C.C D.D2、如圖所示的幾何體的主視圖、左視圖、俯視圖中有兩個視圖是相同的,則相同的視圖是(
)A. B.C. D.3、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤4、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個5、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(
)A.1個 B.2個 C.3個 D.4個6、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,10二、多選題(6小題,每小題2分,共計12分)1、(多選)若數(shù)使關(guān)于的一元二次方程有兩個不相等的實數(shù)解,且使關(guān)于的分式方程的解為非負整數(shù),則滿足條件的的值為(
)A.1 B.3 C.5 D.72、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:43、不能說明△ABC∽△A’B’C’的條件是(
)A.或 B.且C.且 D.且4、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(
)A.23 B.32 C. D.5、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=16、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結(jié)論正確的是(
)A. B.C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、若正方形的對角線的長為4,則該正方形的面積為_________.2、關(guān)于的一元二次方程的一個根是2,則另一個根是__________.3、已知、在同一個反比例函數(shù)圖像上,則________.4、若函數(shù)是反比例函數(shù),那么k的值是_____.5、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.6、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過B、D兩點,則b﹣k=_____.7、如果關(guān)于x的方程有兩個相等的正實數(shù)根,那么m的值為____________.8、你知道嗎,對于一元二次方程,我國古代數(shù)學(xué)家還研究過其幾何解法呢!以方程即為例加以說明.?dāng)?shù)學(xué)家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)四、解答題(6小題,每小題10分,共計60分)1、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.2、如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別為OB,OD的中點,延長AE至點G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當(dāng)AB與AC滿足什么數(shù)量關(guān)系時,四邊形EGCF是矩形?請說明理由.3、已知關(guān)于的一元二次方程有實數(shù)根.(1)求的取值范圍.(2)若該方程的兩個實數(shù)根為、,且,求的值.4、解下列方程:(1);(2)5、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時,求m的值.6、如圖,在矩形中,對角線與相交于點E,過點A作,過點B作,兩線相交于點F.(1)求證:四邊形是菱形;(2)連接,若,求證:.-參考答案-一、單選題1、B【解析】【分析】主視圖就是從正面看到的視圖.【詳解】從正面看,一層三個正方形,左側(cè)由三層正方形.故選B【考點】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.2、B【解析】【分析】判斷出組合體的左視圖、主視圖及俯視圖,即可作出判斷.【詳解】解:幾何體的左視圖和主視圖是相同的,故選:B.【考點】本題考查了簡單組合體的三視圖,屬于基礎(chǔ)題,注意理解三視圖觀察的方向.3、D【解析】【分析】根據(jù)一元二次方程的定義進行判斷.【詳解】①該方程符合一元二次方程的定義;②該方程中含有2個未知數(shù),不是一元二次方程;③該方程含有分式,它不是一元二次方程;④該方程符合一元二次方程的定義;⑤該方程符合一元二次方程的定義.綜上,①④⑤一元二次方程.故選:D.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.4、A【解析】【分析】根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設(shè)PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經(jīng)檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質(zhì),熟練掌握相似三角形對應(yīng)邊成比例是解本題的關(guān)鍵.5、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.6、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關(guān)鍵.二、多選題1、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關(guān)于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關(guān)于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關(guān)鍵,注意分式的分母不為0的隱含條件,避免漏解.2、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應(yīng)邊的比的平方;4、等邊三角形的高=邊長×sin60°.3、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應(yīng)成比例且夾角相等的兩個三角形相似;三邊對應(yīng)成比例的兩個三角形相似;兩角對應(yīng)相等的兩個三角形相似.4、AB【解析】【分析】設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當(dāng)時,,符合題意,原來的兩位數(shù)是23,當(dāng)時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).5、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.6、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.三、填空題1、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關(guān)鍵.2、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關(guān)鍵.3、【解析】【分析】首先設(shè)反比例函數(shù)解析式為,然后將兩點坐標(biāo)分別代入,即可得出和的表達式,進而得解.【詳解】解:設(shè)反比例函數(shù)解析式為,將、分別代入,得,∴故答案為.【考點】此題主要考查反比例函數(shù)的性質(zhì),熟練掌握,即可解題.4、0【解析】【分析】直接利用反比例函數(shù)的定義得出答案.【詳解】∵函數(shù)是反比例函數(shù),∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合題意舍去)∴k=0.故答案為:0.【考點】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義,是解題的關(guān)鍵.5、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關(guān)鍵是證明PE=DF,PF=CF.6、2﹣.【解析】【分析】連接OB,過點B作BE⊥x軸于點E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對等邊可得出OD=OB,進而可得出點D的坐標(biāo),在Rt△BOE中,通過解直角三角形可得出點B的坐標(biāo),由點B,D的坐標(biāo),利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結(jié)論.【詳解】解:連接OB,過點B作BE⊥x軸于點E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點D的坐標(biāo)為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點B的坐標(biāo)為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點】此題考查的是正方形的性質(zhì)、等腰三角形的判定、直角三角形的性質(zhì)和求一次函數(shù)的解析式,掌握正方形的性質(zhì)、等角對等邊、30°所對的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關(guān)鍵.7、4【解析】【分析】根據(jù)一元二次方程根的判別式即可求得或,再根據(jù)方程有兩個相等的正實數(shù)根,可知兩根之和為正數(shù),據(jù)此即可解答.【詳解】解:關(guān)于x的方程有兩個相等的實數(shù)根解得或又關(guān)于x的方程有兩個相等的正實數(shù)根兩根之和為正數(shù),即,解得故故答案為:4【考點】本題考查了一元二次方程根的判別式及根與系數(shù)的關(guān)系,熟練掌握和運用一元二次方程根的判別式及根與系數(shù)的關(guān)系是解決本題的關(guān)鍵解.8、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應(yīng)用,仿造案例,構(gòu)造出合適的大正方形是解題的關(guān)鍵.四、解答題1、見解析【解析】【分析】先根據(jù)四邊形是平行四邊形且得到平行四邊形是菱形,即可得到,再根據(jù),,證明四邊形是平行四邊形,即可得到平行四邊形是矩形.【詳解】證明:∵四邊形是平行四邊形且∴平行四邊形是菱形∴,即又∵,.∴四邊形是平行四邊形,∴平行四邊形是矩形.【考點】本題主要考查了平行四邊形的判定,矩形的判定,菱形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.2、(1)見解析(2)當(dāng)AC=2AB時,四邊形EGCF是矩形.理由見解析【解析】【分析】(1)由平行四邊形的性質(zhì)得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行線的性質(zhì)得出∠ABE=∠CDF,中點證出BE=DF,證明△ABE≌△CDF即可;(2)證出AB=OA,由等腰三角形的性質(zhì)得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由全等可以推出EG=CF,又因為∠OEG=90°,得出四邊形EGCF是矩形,即可得出結(jié)論.(1)證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF.∵點E,F(xiàn)分別為OB,OD的中點,∴BE=OB,DF=OD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).(2)解:當(dāng)AC=2AB時,四邊形EGCF是矩形.理由如下:∵AC=2OA,AC=2AB,∴AB=OA=OC=CD.∵點E是OB的中點,∴AG⊥OB,∴∠OEG=90°,∵OC=CD,F(xiàn)是OD的中點,∴CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得△ABE≌△CDF,∴AE=CF.∵EG=AE,∴EG=CF,∴四邊形EGCF是平行四邊形.又∵∠OEG=90°,∴四邊形EGCF是矩形.【考點】本題主要考查了平行四邊形的性質(zhì)和判定、矩形的判定、全等三角形的判定、平行線的性質(zhì).3、(1).(2).【解析】【分析】(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;(2)由根與系數(shù)的關(guān)系可得出x1+x2=6,x1x2=4m+1,結(jié)合|x1-x2|=4可得出關(guān)于m的一元一次方程,解之即可得出m的值.【詳解】(1)∵關(guān)于x的一元二次方程x2-6x+(4m+1)=0有實數(shù)根,∴△=(-6)2-4×1×(4m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機械通氣臨床故障處理總結(jié)2026
- 道路安全培訓(xùn)知識
- 2026年甘肅省武威市高職單招數(shù)學(xué)試題及答案
- 道路交通安全及事故課件
- 2026年度執(zhí)業(yè)藥師繼續(xù)教育公需科目考試題庫(含答案)
- 2026年甘肅省隴南市高職單招英語試題解析及答案
- 2025小動物視覺電生理數(shù)據(jù)采集操作規(guī)范指南(2025)課件
- 中考語文文言文對比閱讀(全國)15《記承天寺夜游》對比閱讀16組80題(原卷版)
- 邊坡坍塌安全教育培訓(xùn)課件
- 施工現(xiàn)場安全檢查計劃安排表
- 2026年廣東農(nóng)墾火星農(nóng)場有限公司公開招聘作業(yè)區(qū)管理人員備考題庫及參考答案詳解
- 腫瘤化療導(dǎo)致的中性粒細胞減少診治中國專家共識解讀
- 2025年查對制度考核考試題庫(答案+解析)
- 云南省2025年普通高中學(xué)業(yè)水平合格性考試歷史試題
- 養(yǎng)老護理服務(wù)的法律監(jiān)管與執(zhí)法
- 四川省2025年高職單招職業(yè)技能綜合測試(中職類)汽車類試卷(含答案解析)
- 隧道施工清包合同(3篇)
- 消化系統(tǒng)腫瘤多學(xué)科協(xié)作(MDT)診療方案
- 圍手術(shù)期疼痛的動物模型與轉(zhuǎn)化研究
- 安泰科技招聘筆試題庫2025
- 燃機三菱控制系統(tǒng)簡述課件
評論
0/150
提交評論