版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省湘鄉(xiāng)市中考數學真題分類(勾股定理)匯編定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、下列四組數中,是勾股數的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,2、如圖,中,,一同學利用直尺和圓規(guī)完成如下操作:①以點C為圓心,以CB為半徑畫弧,交AB于點G;分別以點G、B為圓心,以大于的長為半徑畫弧,兩弧交點K,作射線CK;②以點B為圓心,以適當的長為半徑畫弧,交BC于點M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E.請你觀察圖形,根據操作結果解答下列問題;過點D作交AB的延長線于點F,若,,則CE的長為(
)A.13 B. C. D.3、如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米4、我國古代數學名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設秋千的繩索長為尺,根據題意可列方程為(
)A. B.C. D.5、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.46、《九章算術》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.7、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.2、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.4、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.5、如圖,在中,,于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.6、如圖,在正方形網格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數為_____________.
7、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.8、我國古代的數學名著《九章算術》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據題意,可列方程為__________.三、解答題(7小題,每小題10分,共計70分)1、已如:如圖,四邊形中,,求四邊形的面積.2、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?3、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數,則三邊的長為“勾股數”.構造勾股數,就是要尋找3個正整數,使它們滿足“其中兩個數的平方和(或平方差)等于第三個數的平方”.通過觀察常見勾股數“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數中(),最小數為奇數時,另兩個正整數和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構成勾股數.(2)若一組勾股數中,最小數為9,則另兩個數分別是________和________.4、勾股定理被譽為“幾何明珠”,在數學的發(fā)展歷程中占有舉足輕重的地位.它是初中數學中的重要知識點之一,也是初中學生以后解決數學問題和實際問題中常常運用到的重要知識,因此學好勾股定理非常重要.學習數學“不僅要知其然,更要知其所以然”,所以,我們要學會勾股定理的各種證明方法.請你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點E,且△ABE≌△BCD.求證:AB2=BE2+AE2.5、如圖,CE⊥AB于點E,BD⊥AC于點D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.6、在△ABC中,,AB=5cm,AC=3cm,動點P從點B出發(fā),沿射線BC以1cm/s的速度移動,設運動的時間為t秒,當△ABP為直角三角形時,求t的值.7、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)求的度數;(2)海港受臺風影響嗎?為什么?-參考答案-一、單選題1、A【解析】【分析】欲判斷是否為勾股數,必須根據勾股數是正整數,同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數,是勾股數,故此選項符合題意;B、42+52≠62,不是勾股數,故此選項不合題意;C、22+32≠42,不是勾股數,故此選項不合題意;D、,不是正整數,不是勾股數,故此選項不合題意;故選:A.【考點】此題主要考查了勾股數,解答此題要用到勾股數組的定義,如果a,b,c為正整數,且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數.2、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設CE=CD=DF=x,在Rt△ADF中,利用勾股定理構建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點】本題考查作圖-復雜作圖,全等三角形的判定和性質,等腰三角形的判定,以及勾股定理等知識,解題的關鍵是學會構建方程解決問題,屬于中考常考題型.3、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.4、C【解析】【分析】根據勾股定理列方程即可得出結論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應用,讀懂題意是解題的關鍵.5、B【解析】【分析】根據勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應用,翻折的性質,熟記勾股定理的計算公式是解題的關鍵.6、D【解析】【分析】先畫出三角形,根據勾股定理和題目設好的未知數列出方程.【詳解】解:如圖,根據題意,,,設折斷處離地面的高度是x尺,即,根據勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關鍵是根據題意利用勾股定理列出方程.7、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質,勾股定理,解題的關鍵是靈活運用所學知識解決問題.二、填空題1、+24【解析】【分析】連結BD,可求出BD=6,再根據勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點】本題考查的是正方形的性質,全等三角形的判定與性質,圖形面積之間的關系,證明是解本題的關鍵.3、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質是解題的關鍵.4、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質,平行線性質,三角形全等判定與性質,勾股定理,掌握中線性質,平行線性質,三角形全等判定與性質,勾股定理,關鍵是利用輔助線構造三角形全等.5、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數據:∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質等,解題的關鍵是掌握折疊的性質,熟練使用勾股定理求線段長.6、45°【解析】【分析】取網格點M、N、F,連接AM、AN、BM、MF、BN,根據網格線可得到∠ABD+∠CBE=∠MAB,再根據勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據網格線可知NB=1=MF,AN=3,AF=2,由網格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關鍵.7、29【解析】【分析】如圖(見解析),先根據正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點】本題考查了勾股定理的應用,熟練掌握勾股定理是解題關鍵.8、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關系,正確列出相應方程是解題的關鍵.三、解答題1、【解析】【分析】利用勾股定理先求解再利用勾股定理的逆定理證明從而可得答案.【詳解】解:如圖,連接AC,,所以四邊形ABCD的面積為:【考點】本題考查的是勾股定理與勾股定理的逆定理的應用,掌握“勾股定理與勾股定理的逆定理”是解本題的關鍵.2、速度為30米每秒【解析】【分析】根據勾股定理求得的長度,再根據速度等于路程除以時間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.3、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數的公式代入求值即可.(1)證明:,∴,,構成勾股數.(2)根據最小數為奇數時,另兩個正整數為,,當a=9時,,,故答案為:40,41.【考點】本題考查了勾股定理逆定理,勾股數的探索,代入求值,熟練掌握勾股數是解題的關鍵.4、證明見解析【解析】【分析】連接AC,根據四邊形ABCD面積的兩種不同表示形式,結合全等三角形的性質即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點】本題考查了勾股定理的證明,解題時,利用了全等三角形的對應邊相等,對應角相等的性質.5、(1)見解析(2)【解析】【分析】(1)根據題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食欲不佳的飲食調節(jié)
- 經期乳房脹痛的飲食調理
- 低嘌呤飲食的應用人群
- 2025年碳酸二乙酯項目合作計劃書
- 2025年耐磨球段合作協議書
- 盆景制作與養(yǎng)護成功案例分享
- 超聲穿刺常見問題解答與護理對策
- 護理生心理健康指南
- 員工忠誠課件
- 員工入職廉潔培訓課件
- 2026年全國煙花爆竹經營單位主要負責人考試題庫(含答案)
- 防范非計劃性拔管
- 2025年考研政治《馬克思主義基本原理》模擬卷
- (新教材)部編人教版三年級上冊語文 第25課 手術臺就是陣地 教學課件
- 2026天津農商銀行校園招聘考試歷年真題匯編附答案解析
- 2025重慶市環(huán)衛(wèi)集團有限公司招聘27人筆試歷年參考題庫附帶答案詳解
- 鉆井安全操作規(guī)程
- 精密減速機行業(yè)發(fā)展現狀及趨勢預測報告2026-2032
- 中小學《信息技術》考試試題及答案
- 2025及未來5年掛鐘機芯項目投資價值分析報告
- IPO融資分析師融資報告模板
評論
0/150
提交評論